
ANSY -
Getting in Linux
Kernel details

-- Cyril zarak Duval, root CRI/ACU 2020

version 2022-12-20

Introduction
Generic information about the course

Why should you listen to the course ?

➔ Linux is a state of the art in the industry
➔ Understanding in details will help you as low-level

engineers
➔ Provide some tools useful to work with Linux
➔ Help you acquire an analytic mind to tackle low-level

issues
➔ Subject somewhat difficult
➔ Getting a decent grade

3

Notions
➔ ptrace
➔ strace & rr
➔ ebpf
➔ auditd
➔ kprobes/uprobes/tracepoint
➔ perf
➔ pseudo filesystems
➔ VFS
➔ iptables/nftables
➔ initramfs

4

➔ PXE
➔ dracut
➔ BCC
➔ CPU & scheduler metrics
➔ Memory management & metrics
➔ Systemd
➔ …

Understand
observability
Observability applied to Linux

Observability

6

➔ Observability is a high-level notion
➔ Observability means understanding what is going on in a

system
➔ Observability in its modern approach has 3 pillars:

◆ Metrics
◆ Logs
◆ Tracing

➔ Linux is the core of all our foundations
➔ We need to have observability in it

◆ To better understand, to administrate it
◆ To debug

Observability in Linux

7

➔ Linux thankfully offers interfaces for observability
➔ What are the first things that come to your mind when you

think about observability and Linux ?
◆ What are the things you want to observe ?
◆ What are the interface(s) you will use ?

Get information about
CPU usage
Let’s start with something “simple”

CPU and linux

9

➔ What does CPU usage means ?
◆ 0, 50, 100% ?
◆ 800% ?

➔ It a percentage of time spent working on stuff, otherwise
idling

➔ How do we get this number ?
◆ top, htop
◆ mpstat

CPU and Linux

10

➔ How does they get the information ?
➔ Let’s pause this question and investigation, and focus on the

methodology here

“

11

I have a tool behaving in a way
that is unknown to me.

How do I figure out how it
works?

How does it works ?

12

➔ mpstat returns CPU usage, along with some useful
information

➔ Does it create this information ?
➔ Does it collect this information from somewhere ?

◆ Is it on the network ?
◆ Is it on the machine ?

● Our filesystem ?
● Any other mean ?

How do we get this info ?

13

➔ 2 hypothesis:
◆ The CPU usage information is returned by the hardware

directly
◆ The CPU usage is computed by the kernel and reported

➔ How can we figure this out ?
◆ Knowing that mpstat knows the answer

➔ The most straightforward solution would be to read mpstat
source code
◆ But before actually doing this, let’s play a small game

What are the interfaces offered ?

How do we contact
the kernel ?

Kernel interfaces

15

➔ The “only” interface is a syscall
◆ All other high-level interfaces are syscall-based

➔ A syscall can gives us information directly:
◆ gethostname(2)
◆ gettimeofday(2)
◆ getcpu(2)
◆ getcwd(2)
◆ …

Kernel interfaces

16

➔ Some syscalls are used to reach higher level interfaces
◆ open(2), openat(2), read(2), write(2), close(2)

➔ What are higher level kernel interfaces ?
◆ /proc/….
◆ /sys/….
◆ /dev/…
◆ /sys/kernel/debug/…
◆ /sys/kernel/security/…
◆ /sys/firmware/efi/efivars/…
◆ /sys/fs/cgroup/…

Kernel interfaces

17

➔ Are other syscalls used for higher level interfaces ?
➔ Yes:

◆ socket(2)
◆ ioctl(2)
◆ bpf(2)
◆ perf_event_open(2)
◆ ptrace(2)

Kernel interfaces

18

➔ Let’s get back the special directories mentioned before
(/sys, /proc, …)

➔ How are they special ?
➔ They aren’t “real files” on your SSD

◆ In fact you can open your SSD on another machine and
check that by yourself in a very easy and naive way

➔ The files there are kernel interfaces in the forms of a file
◆ “In UNIX, everything is a file”

➔ Those are pseudo-filesystems
➔ But more about that later …

So, what about mpstat ?

Back to our CPU
usage analysis

mpstat

20

➔ mpstats like almost everything on a classic linux distro is
open-source

➔ Checking source code is therefore a good reflex for things
like this

➔ Let’s read mpstats source code
➔ Code is well written

◆ Follow many standards
◆ Proper naming convention
◆ Comments
◆ ….

https://github.com/sysstat/sysstat/blob/master/mpstat.c

mpstat

21

➔ Code is quite short but finding the information still took time
➔ Can we make this more efficient ?
➔ What could be another approach than reading source code ?

➔ What do we know or deduced ?
◆ The information is probably held by the kernel
◆ mpstat gets this information
◆ Communication between userland and kernel land is

done via syscalls
◆ Could we just look at the syscalls mpstats did ?

Let’s ptrace mpstat

22

➔ Linux offers a syscall and its interface to debug softwares
➔ ptrace(2)

◆ But more about it later …
➔ Used to debug, like GDB, to see what is going on, inspect

code, variable values, etc
➔ What if we have a special debugger ?

◆ This debugger will just run the program
◆ But whenever a function is called, it checks if it a syscall

function ?
● But wait, are syscall functions ?

How is implemented a syscall in the end ?

Some syscall digression

What are syscalls ?

24

➔ We know that a syscall is a kernel function that is called
from userland
◆ Sort of

➔ But are we allowed to call directly a function like this ?
➔ In x86 (IA_32 and x86-64) we run code on the CPU in rings

◆ ring 0 is the most privileged one
● Allowed to access hardware and configure the CPU

directly
◆ ring 3 is the one userland runs in. Can do computation,

but cannot run some privileged CPU instructions

CPU rings

25

What are syscalls ?

26

➔ The kernel runs in ring 0
➔ The kernel can therefore do things regular process can’t
➔ Regular process still need to access some protected devices

or perform some privileged operations
◆ In a controlled environment (permissions, ….)

➔ They contact the kernel for those operations via syscalls
➔ The kernel checks permissions, do sanity checks, etc and

performs the operation
➔ The result, if any, is returned to the user

What are syscalls ?

27

➔ Syscalls are the interface between userland and the kernel
➔ Allows privileged operation, control kernel behavior or use

kernel features
➔ Allow abstraction (disk drivers, network drivers, ….)
➔ How can we call a ring 0 function from ring 3 ?

◆ Do we have symbols exported ?
➔ In x86 we have 3 ways:

◆ INT 0x80 (legacy)
◆ sysenter (IA_32)
◆ syscall (AMD64)

Syscall implementation in x86

28

➔ INT 0x80 is hardly used anymore, it is a legacy way of
making a syscall
◆ Creates an interrupt to notify the kernel

● But more about that later …
➔ sysenter is also called fast system call, created by intel for

IA_32
➔ syscall is the AMD64 version, mostly used now

Syscall implementation in x86

29

➔ When doing a syscall instruction, what happens exactly ?
➔ On syscall, the CPU looks in a specific MSR: IA32_LSTAR
➔ IA32_LSTAR MSR contains a ring 0 function address to

execute
➔ In Linux, it’s entry_SYSCALL_64

◆ https://elixir.bootlin.com/linux/latest/source/arch/x86/entr
y/entry_64.S#L49

➔ Linux determines which syscall has been called in this
function based on %rax

➔ The arguments to the syscall are in %rdi, %rsi, … as usual

https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L49
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L49

Syscall implementation in x86

30

➔ In entry_SYSCALL_64 we prepare everything to call the actual
kernel function
◆ We save userland general purpose registers on the

stack and do a few things
➔ We call the kernel function associated with the syscall

requested, forwarding the arguments userland gave
➔ Once the kernel function returns, we put the return value on

the stack
➔ We do a few things back, put the value from the stack back

in registers and return

Syscall consequences

31

➔ Calling a syscall means calling a kernel function through
some steps

➔ The steps are to ensure security when switching from ring 3
code to ring 0 (and vice-versa)

➔ These steps are called privilege switch
➔ Privilege switch is quite expensive:

◆ More instructions to execute
◆ No CPU pipelining/branch prediction/…
◆ Data shouldn’t be accessed directly and shall always go

through copy_from_user/copy_to_user
◆ Pointers must be handled carefully

Some more information about syscall
implementation

About vDSO

Virtual Dynamic Shared Object

33

➔ Some syscalls are used a lot
➔ They don’t have any security and will behave the same for

every user (privileged or not)
➔ To allow better performances, the kernel exposes some

syscall directly in userland
➔ Userland implementation is done in vDSO
➔ Shared ELF object to every userland process

◆ Address fetcheable via auxiliary values
◆ Glibc gets it for you

Virtual Dynamic Shared Object

34

➔ Contains some syscall, depending on the architecture
➔ gettimeofday(2), getcpu(2), …
➔ No privilege switch = faster

◆ No strace, no seccomp however

Virtual Dynamic Shared Object

35

➔ Contains some syscall, depending on the architecture
➔ gettimeofday(2), getcpu(2), …
➔ No privilege switch = faster

◆ No strace, no seccomp however

Now we do know what a system call is

Let’s get back to
mpstats system calls

Let’s ptrace mpstat

37

➔ Linux offers a syscall and its interface to debug softwares
➔ ptrace(2)
➔ Used to debug, like GDB, to see what is going on, inspect

code, variable values, etc
➔ What if we have a special debugger ?

◆ This debugger will just run the program
◆ But whenever a function is called, it checks if it a syscall

function
◆ If so, prints arguments, resume execution and print

return value

Discovering strace

38

➔ A famous debugging tool for such purposes exists
➔ strace(1)
➔ In the simplest usage:

◆ Starts a process with given arguments
◆ Gets notified of all the syscalls the tracee performs
◆ Prints the syscall, its arguments and return value

Usefulness of strace

39

➔ When is strace useful ?
◆ Find out why a software fails
◆ Find out how it behaves if no documentation

● Ex: location of config files read by the app
● Ex: Interaction with other processes
● Ex: Memory impact and behaviour

◆ See where a software hangs (if on a syscall)
◆ ….

➔ strace is a very popular and versatile debug tool
◆ Simpler and quicker to use than GDB

● Not suited for all workflows though

How to strace ?

40

➔ How to use strace(1) efficiently ?
➔ A few tips:

◆ Use -f to follow and strace forks too
◆ Use -z or -Z to see only successful or failed syscalls
◆ -c will give you a summary/overview of the syscalls

used. Can be useful at first to have a sneak peak
◆ Discover the -e option

“

41

Let’s discover strace -e and play
with strace a bit

Strace can be difficult

42

➔ Since strace will show every syscalls, it might be difficult to
find what you’re looking for

➔ Especially if the software is huge
◆ Or we have limited knowledge on what to look for

➔ Example: pylint
◆ Where’s the configuration file ?
◆ Tracing open(2)/openat(2) ?

Strace can be difficult

43

Strace can be difficult

44

➔ Example: pylint
◆ Where’s the configuration file ?
◆ Tracing open(2)/openat(2) ?

● 991 openat(2) in this example
◆ Maybe grepping “cfg”, “yml” or “json” ?
◆ Actually file name is pylintrc
◆ And not even open/openat(2) if doesn’t exist !

Strace can be difficult

45

Strace can be difficult

46

➔ Useful sometimes to simulate a failure or to simulate a
success of a syscall or a set of syscalls

➔ Need to have some knowledge of the software
◆ Or some intuition

CPU metrics
What is a CPU with linux ?

Understanding CPU metrics

48

➔ A CPU core or thread shall already be known to you
➔ We’ve seen already 2 kinds of things a CPU can execute in

this course:
◆ User code
◆ Kernel code

➔ What are the other things a CPU can do ?
➔ Fortunately a CPU isn’t always doing something: it can idle
➔ Let’s check the metrics exported by the kernel in /proc/stat

Understanding CPU metrics

49

➔ User
➔ Nice
➔ System
➔ Idle
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest
➔ Guest_nice

Understanding CPU metrics

50

➔ User -> userland code
➔ Nice
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest
➔ Guest_nice

Understanding CPU metrics

51

➔ User -> userland code
➔ Nice
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice -> kernel KVM gave nice CPU time to VM

Process niceness and
scheduler
Why isn’t pulseaudio nice ?

CPU and multithreading

53

➔ A classic PC/server runs dozens if not hundreds of
processes in “parallel”

➔ A modern CPU has multiple cores, and multiples threads or
logical cores/hyper-thread

➔ Let’s say our CPU has 16 logical cores
➔ I can truly execute 16 processes in parallel
➔ How can I give the impression it’s running 150 ?

CPU and multithreading

54

➔ Most processes don’t need the CPU 100% of the time
➔ They need some time to work, and have to wait

◆ Timer, user input, IO, being activated back, …
➔ If most of them don’t need to actually run in parallel, we can

split execution in small timeshares, and simulate parallel
execution

➔ This is the role of the scheduler to provide such timeshares
and execute processes

CPU and multithreading

55

➔ Here is the classical representation of a Process state in
Linux

Process states
Giving meaning to R/S/D/Z/T

CPU and multithreading

57

➔ Actually it looks more like this

Process state

58

➔ R state means running or runnable
◆ Either currently being executed on a CPU core (running)
◆ Or waiting for a core to be free and for the scheduler to

start it (runnable)
➔ S state is the state some process will spend the most time

in
◆ Waiting for an event, for I/O, for a timer, …

➔ T state is fairly easy to grasp, one stopped the process by
sending a SIGSTOP signal

Process state

59

➔ D state is a bit more shady
◆ Some linux syscall are not interruptible. It means that a

process waiting for the syscall to complete cannot be
killed.

◆ No signal can be transmitted, even SIGKILL
◆ Examples include some I/O syscalls, KVM related calls,

etc
● https://elixir.bootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE

◆ Famous example often found is a NFS-related process
stuck in D-state when NFS server is unreachable

https://elixir.bootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE

Process state

60

➔ Z state is for a zombie
◆ Zombie process is a process that has finished its

execution but hasn’t been wait(2)-ed by its parent
◆ Its information remains and must be collected for the

process to be removed from the process list
◆ Init process must wait for zombie process re-attached

to it to maintain a clean system
◆ When a zombie is create, SIGCHLD is sent to parent

process

What does it have to
do with niceness ?
Exploring CFS

CFS - Completely Fair Scheduler

62

➔ The role of the process scheduler is to run process when it
makes sense
◆ When they are ready to run
◆ When they can (i.e. a CPU core is available)

➔ Linux default scheduler is called CFS
➔ It divides time in timeslices
➔ It gives a timeslice to the process that is ready to be run and

has been starving CPU time the most first

CFS - Completely Fair Scheduler

63

➔ If the system is not overloaded, CFS doesn’t have to make
important decisions
◆ Most process are in D/S state, and therefore very few in

R state. Decisions are easy
➔ But if the system starts to be overloaded, CFS comes to play
➔ CFS selects the process that is missing the most vruntime,

i.e. the process that should have been running but hasn’t
◆ Takes decision based on total execution time and how

long it has been waiting

CFS - Completely Fair Scheduler

64

➔ CFS tracks process via a red/black tree
◆ On the left of the tree, process with the smallest vruntime

➔ It is also able to dynamically change the length of the CPU
timeslice based on the load:
◆ If a process is alone, it makes sense to give it a lengthy

timeslice since it won’t impact anyone
◆ If 2 process requires each 50% of a single CPU core, to make

them look like they run in parallel we need to alternate their
execution
● But mind context_switch ! Intervenes

sched_min_granularity_ns

CFS

65

CFS - Completely Fair Scheduler

66

➔ But CFS is more complex than that
➔ Some process needs higher priority in their scheduling,

because scheduling latency impacts
◆ I.e. audio

● audio doesn’t need a lot of CPU time
● But audio suffers heavily from latency

➔ This is the niceness of a process with linux
➔ The nicer the process, the less priority it gets
➔ Very nice process can still take 100% of a CPU core. They will

just be descheduled if anyone else is asking for some CPU time

CFS - Completely Fair Scheduler

67

➔ CFS also takes into account various other configuration
➔ Internally, it also has a concept of priority
➔ Priority is changed by niceness, but to a range only
➔ To access the other priority values, a process must change

its scheduling class
➔ More info on sched(7)

CPU load
A metric often misunderstood

CPU load

69

➔ CPU load can be understood as “how many operations my
CPU is currently doing”

➔ This is a wrong understanding when it comes about the load
metric reported by linux

➔ A better understanding would be “How much pressure is
being applied to the CPU in average for a period of time”

➔ What does it measure exactly ?

CPU load

70

➔ Linux load represents the number of processes running, or
waiting to be ran on the system, in average for a period of
time
◆ It also includes processes in uninterruptible sleep

● I/O matters
◆ It is not limited to a core -> all load values don’t have

the same meaning on each machine
◆ Usually troubles begins when the load reaches the

number of CPU cores

CPU load

71

➔ 3 values exported in /proc/loadavg
◆ 1 min, 5min and 15min load
◆ Number of processes in R state / schedulable entities
◆ PID of the latest created process

CPU load

72

➔ Having 3 loads metrics, and them being averages has
impact

➔ There is delay between event and possible visualization on
the curves

➔ load1 is closer to “instant” load while load15 is really
difficult to pull in any direction

CPU load

73

Load over time

Start of event

End of event

Let’s get back to our
CPU metrics
We do know now who’s nice and who
isn’t

Understanding CPU metrics

75

➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice -> kernel KVM gave nice CPU time to VM

Understanding CPU metrics

76

➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal -> As a VM, hypervisor didn’t schedule us
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice -> kernel KVM gave nice CPU time to VM

Understanding CPU metrics

77

➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait -> time spent for a process waiting for I/O (unreliable)
➔ Irq
➔ Softirq
➔ Steal -> As a VM, hypervisor didn’t schedule us
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice -> kernel KVM gave nice CPU time to VM

Quick tour of IRQ and
softIRQ
Bringing some memory back

CPU interrupts

79

➔ The way for the hardware to notify the CPU something is
happening is through IRQ

➔ For example, the user moved its mouse or typed on its
keyboard

➔ Paquets reached the machine and are waiting on the
network card

➔ Without getting into too many details, the CPU gets notified
of these events through the PIC (Programmable Interrupt
Controller)

CPU interrupts (x86)

80

➔ An interrupt stops the current CPU execution and executes
an interrupt handler read on the IDT
◆ The IDT (Interrupt Descriptor Table) maps interrupts to

handlers
➔ An interrupt can be triggered by external device (like the

network card) or by the CPU itself
◆ In this case it’s called a software interruption

● Or an Exception (x86)
◆ Examples include a division by 0, or an INT instruction

CPU interrupts (x86)

81

➔ Exceptions (or software interrupts) are of 3 categories:
Traps, Fault and Abort
◆ A trap is reported after the execution (ex: INT) and allow

process continuity
◆ A Fault is reported before the actual execution to allow

to fix it (ex: div / 0)
◆ An Abort is when everything is on fire. Run.
◆ More about it in the x86 Intel manual

CPU interrupts (x86)

82

➔ In linux, it’s translated as interrupts/IRQ (Interruption
ReQuest) and softIRQ (software IRQ)

➔ Values are exposed in /proc/interrupts
➔ softIRQ in linux don’t show all x86 exceptions

◆ softIRQ displayed by Linux are limited, check
/proc/interrupts

◆ softIRQ is a “primitive” system that has been partially
taken over by tasklets

➔ There is no direct mapping between linux exposed values
and x86 events

CPU metrics in the
end
Putting everything together

Understanding CPU metrics

84

➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait -> time spent for a process waiting for I/O (unreliable)
➔ Irq -> hardware interrupts
➔ Softirq -> software interrupts
➔ Steal -> As a VM, hypervisor didn’t schedule us
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice -> kernel KVM gave nice CPU time to VM

Understanding CPU metrics

85

➔ htop CPU bars have colors representing the different kind of
CPU metrics

➔ By default:
◆ blue = nice
◆ green = user
◆ red = kernel (+ iowait + irq + softirq)
◆ orange = guest (+ steal)

PSI - how to
represent pressure
Getting a higher level metric to abstract

Monitor system going wrong

87

➔ Let’s say you want to monitor your system and try to detect
problematic states

➔ What is a problematic state ?
◆ Let’s define this in this context by “a state when your

workload doesn’t run properly or in a degraded state,
not exploiting your machine full capacity”

➔ In this case, is a 100% CPU usage defined as a problematic
state ?

Understanding when a state is
problematic

88

➔ CPU is a complex metric to grasp when trying to investigate
problematic situations
◆ Quite some metrics
◆ Easy to get fooled

● “OMG my CPU is spending all its resources on idle !!”
➔ CPU used at 100% doesn’t mean your application is disturbed
➔ In some cases, it can be impacted without reaching 100%
➔ Try to put your metrics in correlation with your application

Understanding when a state is
problematic

89

➔ 100% CPU usage when compiling the kernel
◆ Usually not a problem

● Indicates reaching your max capacity. You might
want to upgrade your CPU maybe ?

◆ Can be if done alongside other workload
◆ Niceness to keep in mind

➔ It’s better to rely on what you observe
◆ Latency, mouse lag, etc
◆ How to program this ?

Monitor system going wrong

90

➔ Load is an indicator indeed but:
◆ Relative value (number of cores)
◆ No indication of actual waiting time the process had to

wait
◆ R+D state, so few faulty NFS process and the load goes

up the roof
◆ Average over time

Monitor system going wrong

91

➔ Linux proposes another metric: Pressure Stall Information
➔ From ~2018 by Facebook
➔ 3 metrics: io, memory and CPU
➔ Represent the % of time wasted because of processes

conflicts for a resource
◆ You can have 100% used CPU core and 0% CPU PSI

➔ Has a polling interface
◆ Used to loadbalance workload in Facebook

What about memory ?
Yet another complex metric

Different kinds of memory

93

➔ Memory is a wide term with different kinds:
◆ Volatile, fast memory (RAM)
◆ Non-volatile, slower memory (swap)

➔ When trying to understand memory for your system, 2
kinds:
◆ Virtual memory
◆ Physical memory

➔ The kernel in combination with the MMU (Memory
Management Unit) is responsible for abstracting memory to
userland

Physical memory

94

➔ Physical memory is divided in multiple places
◆ I.e. 4x16 GiB of RAM in 4 sticks
◆ 4 GiB of swap on your NVME disk

➔ Physical memory has its own address space
◆ Depends on the lanes you’re plugging the memory in,

the motherboard, …
➔ Different sources of memory may have different latencies
➔ ….

Virtual memory

95

➔ Userland doesn’t want to deal with this
➔ Userland wants a unique address space for memory
➔ For security reasons, userland processes must not be able

to access memory from each other
◆ Per process address space

➔ Userland wants the kernel to do things for it
◆ Maybe he wants to interfere a bit with the decisions

● Advise, flush, …
● Control memory-related mechanisms (i.e. swap)

Virtual memory

96

➔ Memory will be used in multiple cases:
◆ Variable storage (or generic computation needs)
◆ Process executable binary
◆ Disk cache
◆ Kernel memory
◆ Page tables

➔ Memory is used with pages
◆ 4 kiB on AMD64
◆ Possibility to increase with THP (Transparent Huge

Pages)

Process virtual
memory
How do a process have access to
“memory” ?

Process virtual memory

98

➔ Each process has its own address space
➔ For obvious security reasons
➔ Each process address space is virtual

◆ 2 process can share the same address in their virtual
memory that leads to completely different “real”
memory

➔ Each process address space is flat: no segmentation
➔ Different sections in their address space however

◆ Everything is not identical

Process virtual memory

99

➔ Example include a process’ own executable code in a
memory map, called text

➔ A process global variables in a data section
➔ ….
➔ Each process has a struct mm_struct to describe their virtual

address space
◆ Actually threads share the same struct since they have

the same address space
◆ https://elixir.bootlin.com/linux/v6.0.7/source/include/li

nux/mm_types.h#L486

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L486
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L486

Process virtual memory

100

➔ Various interesting implementation details about struct
mm_struct
◆ Like mmap & mm_rb fields

➔ Each process can have (and actually have) VMAs
➔ Virtual Memory Area
➔ Implements an area of virtual memory, with its property
➔ struct vm_area_struct
➔ https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/

mm_types.h#L397

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L397
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L397

Process virtual memory

101

➔ A VMA is associated to a mm_struct
➔ It has flags (including R / W / X)
➔ Makes the link to a file (if not anonymous memory)
➔ VMAs can be seen in /proc/<pid>/maps
➔ Each call to mmap creates a VMA

◆ Sort of, sometimes if it possible, there are merged
together

Pages and Huge pages
Lots of pages and yet not a book released

Virtual memory - pages

103

➔ A page of 4 kiB means 256 000 pages for 1 GiB of RAM
◆ Memory overhead
◆ TLB - Translation Lookaside Buffer

➔ Possibility to have bigger pages to reduce costs
◆ 2 MiB instead of 4 kiB -> 512 times less TLB entries

➔ Can be “dangerous”
◆ Pages allocated but not used don’t count
◆ You can malloc(1024 * 1024 * 1024); no RAM will be taken
◆ You write 1 bit, the page is actually taken
◆ You will waste more with huge pages

Virtual memory - THP

104

➔ THP can be disabled system wide
◆ Or only used when explicitly asked with madvise(2)

➔ madvise(2) indicates what usage a portion of memory will
be subjected to
◆ The kernel will apply optimization for such usage

➔ Usage includes:
◆ Normal
◆ Random
◆ Sequential
◆ willneed/dontneed

◆ (un)mergeable (KSM)
◆ (no)hugepage

Virtual memory - THP

105

➔ People usually don’t care nor pay attention to THP
➔ Many applications will malloc(4 * 1024) 512 times instead

of allocating (4 * 1024 * 512) directly
◆ Most never use madvise either

➔ Therefore, THP system would be unused and useless
➔ Linux introduces khugepaged and heuristics

◆ When allocation more than 2 MiB of RAM at once, you
usually allocate a THP without knowing it

◆ khugepaged will look for pages to merge in a THP

Let’s talk about swap
Why swap is bad but still good (??)

Swap memory

107

➔ For most people, memory = RAM
◆ It’s fast, usually big enough
◆ However volatile, so we need to be careful

➔ However RAM is pricey
◆ It’s quite easy to run out of RAM even with normal (but

relatively heavy) applications/processes
➔ What happens when we run out of RAM ?

◆ If it’s the only memory: oom-killer
◆ If not: swap (then oom-killer if we abuse)

Swap memory

108

➔ Use a persistent disk as a backing storage for more memory
➔ Disk can be of various nature (various costs and speed)

◆ HDD
◆ SSD
◆ NVME
◆ the shitty 1 GiB USB 1.0 key Capgemini or Sopra Steria

gave you in exchange for a CV no one will take time to
read

➔ Performances will suffer: swap is used as a last resort
option

Swap memory

109

➔ When do we swap ?
➔ Swap is used when memory pressure is high. You will not

use swap before reaching a huge RAM usage first
◆ Swapped memory stays in swap if unaccessed even if

the system memory goes down again
➔ What are the consequences ?

◆ Swapping out process that takes CPU time and I/O
◆ “Volatile memory” written to non-volatile device (!)
◆ (very) slow memory access on swapped out memory

Swap memory

110

➔ Where on disk is stored swap ?
➔ 2 options:

◆ Dedicated partition on a disk
◆ Dedicated file on your filesystem

● Must be on a persistent storage (no tmpfs, duh)
➔ Swap device needs a specific partition type (mkswap(8))
➔ Can be enabled and disabled on runtime with

swapon(2)(8)/swapoff(2)(8)

Swap memory

111

➔ Why is swap bad ?
◆ Once you start swapping, performances goes down the

drain (-ish)
◆ .. ?

➔ Why swap is needed ?
◆ Swap isn’t used if the system isn’t stressed
◆ Most OS or applications don’t have an efficient way to

react on memory pressure to free-up memory
◆ Reaching the limits often means bad things
◆ There are traps when reaching high memory usage

Swap memory - vm.swappiness

112

➔ What pages of memory shall be sent to the disk ?
◆ What are the best candidates ?

➔ Intuitively one will say:
◆ Memory rarely accessed
◆ Memory rarely written
◆ LRU

➔ On top of those cases, one important case to not miss is the
memory file-backed, or non-anonymous memory
◆ i.e.: mmap() of a file, a process binary, …
◆ This memory is recoverable. We can evict it safely from

memory altogether

Swap memory - vm.swappiness

113

➔ Behavior of what to do when running out of performing
memory is controllable via vm.swappiness

➔ The value range goes from 0 to 200 (recent kernel)
➔ It is often misunderstood

Swap memory - vm.swappiness

114

➔ What people think (it’s wrong):
◆ vm.swappiness goes from 0 to 100
◆ It indicates the memory threshold at which the kernel

will start swapping
◆ I.e: if vm.swappiness is at 60, if you take 59% of RAM,

no swap, 61%, it will start swapping (maybe)
➔ This is stupid and wrong

◆ Why 60 % ? Why would the kernel voluntarily drop
performances to swap ?

Swap memory - vm.swappiness

115

➔ What it does:
◆ It’s a balance pressure indicator to put more pressure

on swapping out anon pages and dropping recoverable
file pages

◆ It’s from 0 to 200. 0 means aggressive on file pages,
200 on anon pages

◆ The pressure finally applied is a bit complicated:
● Swappiness is ignored in some cases
● Pressure balance is ignored for some part of the list

to ensure no leftovers
● Swappiness = 0 -> no swap unless big troubles

Swap memory - vm.swappiness

116

➔ More information on
https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.
c#L2731

https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.c#L2731
https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.c#L2731

Fear the OOM-killer
How linux kills userland processes by
design

OOM-killer

118

➔ When reaching the final limit of available memory
➔ Kernel mechanism triggered on allocation failure
➔ Find the most suited process to kill

◆ Highest oom_score
➔ What is oom_score ?

◆ Per process score always maintained
◆ Amount of RAM being taken
◆ oom_score_adj
◆ Used to be more complex (user vs root process, HW

direct access, …)

OOM-killer

119

➔ Configurable in /proc (like most kernel mechanisms)
◆ Can be disabled entirely

➔ Killing processes by design “omg wtf”
◆ What do you expect from a system running out of

memory anyway ?
➔ Invocation and its actions logged in /dev/kmsg (dmesg(1))

Getting rid of the OOM-killer

120

➔ Some people don’t like the OOM-killer
◆ But still reckon the job is useful

➔ Namely for a major reason: it intervenes when it’s late
◆ Often too late

➔ 3 projects exists to basically do the same thing, but in
userland:
◆ earlyoom
◆ lmkd on Android
◆ Systemd-oomd (which uses memory PSI)

Kernel threads
You’re not the only one having daemons

Kernel threads

122

➔ The kernel does some tasks synchronously:
◆ Syscalls kernel code is executed when the user calls it

➔ But there are also asynchronous tasks to perform:
◆ Kswapd for example will swap out memory

● Even compress it with zcache enabled
◆ khugepaged does periodic scans to reduce memory

fragmentation by merging pages in THP
➔ Kernel threads are visible with ps or htop like other

processes
➔ They don’t have an associated mm_struct

Understanding
memory metrics
Why is my process taking 17 GiB of RAM
on my 16 GiB laptop ?

Memory metrics

124

➔ The memory metrics we’re the most interested in for basic
usage is free memory
◆ In fact it’s incorrect. We want to know what memory is

still usable for our process
➔ Free memory != Usable memory

◆ Caches
◆ Buffers

➔ When checking for available memory with free -m for
example, be careful to read “available” and not “free”

Memory metrics

125

➔ The interface to check global memory usage for the
machine is /proc/meminfo

➔ It lists memory and breaks it in different kind of usage
➔ It’s has a lot of fields, some of them are overlapping or

imprecise
➔ It can be misleading and quite difficult to understand it

Memory metrics /proc/meminfo

126

➔ Example on my 24 GiB laptop

Memory metrics /proc/meminfo

127

➔ Example on my 24 GiB laptop
➔ Buffers: kernel buffers, for block I/O & IPC
➔ Cached: file pages in memory

◆ Include tmpfs & shmem
◆ Exclude swapcached

➔ Swapcached: Memory that was in swap, was
put back in RAM but kept in swap

Memory metrics /proc/meminfo

128

Memory metrics

129

➔ Mem prefixed metrics don’t include swap
➔ Cached is a huge metric but also imprecise

◆ Code in the kernel itself to check if cached < 0
◆ Quite some subcomponents
◆ Despite the name, everything is not “cache” memory
◆ Everything can’t be reclaimed
◆ Can send partially to swap, but != swapcached

➔ Unevictable means memory that can’t be sent to swap
➔ Mapped is mmap(2)-ed files

◆ No anonymous mmap for example

Different kinds of
memory
Complex graph shown above indicates
how complex it actually is

Dirty memory

131

➔ When writing data to a file, by default the data isn’t actually
written
◆ Well not directly, not always, and it’s difficult to predict

default behavior
➔ Because of performances reasons, when writing to a file,

the data is actually put in a special cache in the kernel
➔ This cache has a special name: dirty memory
➔ Dirty memory is a trick played on the user:

◆ We told them the data is written (write(2) succeeded)
◆ It’s actually not really on disk

Dirty memory

132

➔ Dirty memory is “dangerous”
➔ A hard failure of the system, bug in the kernel, or some

nasty crash, and the data it lost
➔ Dirty memory must be flushed down to the disk
➔ Dirty memory helps for performances, but introduces a risk
➔ In fact, MacOS and windows do this as well

◆ “Don’t unplug the USB key without ejecting it”
➔ How to control dirty memory ?
➔ sync(2)

Dirty memory & writeback

133

➔ open(2) flags like O_DIRECT
➔ Check dirty memory size and watch for high or constant

high values
◆ In might means that disks are a bottleneck

➔ The cache mechanism for write is called write-back
➔ It works with LRU lists

◆ Active and inactive list
● To handle one-access cache eviction case

◆ Known as LRU/2

Dirty memory & writeback

134

➔ Dirty memory (and page cache in general) is implemented
with a struct address_space

➔ These structs are kept in a radix tree
◆ Meaning that the

struct are ordered in
a prefix tree by their
address pointer

Dirty memory & writeback

135

➔ Flushing dirty pages to disk is done asynchronously
◆ Unless cache is full during a cache manipulating

operation
➔ A page is flushed when it has stayed in the cache long

enough
◆ Or when memory is running low
◆ Or when manually requested with sync(2)

➔ Behavior is also tunable via knobs in /proc/sys/vm
◆ There’s even a laptop_mode option !

● Sadly mostly useless nowadays

Dirty memory & writeback

136

➔ Flushing dirty pages to disk is done asynchronously
◆ Unless cache is full during a cache manipulating

operation
➔ A page is flushed when it has stayed in the cache long

enough
◆ Or when memory is running low
◆ Or when manually requested with sync(2)

➔ Behavior is also tunable via knobs in /proc/sys/vm
◆ There’s even a laptop_mode option !

● Sadly mostly useless nowadays

Dirty memory handling

137

➔ How to have both performances and data integrity
assurance ?

➔ Need to trick with concepts like WAL
◆ Write-ahead Logging

➔ Imagine a database context
➔ You don’t want to lose data
➔ But transactions must be quick

◆ As quick as possible
➔ Transactions can be complex. They can impact your whole

data

Dirty memory handling

138

➔ Likely, the database will be stored on disk on a file
➔ It can be huge, so a modification can introduce changes in

quite some “random” places of the file
➔ Random access to different places of the file is expensive, in

terms of I/O
➔ Writing the result after each transaction will take a lot of

time
◆ potentially

Dirty memory handling

139

➔ Instead, WAL technique allow to deal with this exact
behavior

➔ The WAL is a log file that will record each transactions, in
the right order

➔ When a client makes a query:
◆ The transaction is written to the WAL
◆ We make sure the WAL is written to disk
◆ We perform the transaction, and return the value
◆ Later, the modified db file might be flushed out to disk

Dirty memory handling

140

➔ If the database server crashes badly, the WAL is still there
➔ All successful transactions might not have been flushed to

disk
➔ The database engine will check its WAL, and assure that

data is correct
➔ If not, it can correct it since it has all the information in the

WAL
➔ Regularly the WAL is reseted with a checkpoint
➔ Writing to disk the WAL is less expensive since it’s

append-only mode

NUMA nodes
Architecture comes to play

NUMA nodes

142

➔ On some architecture, not all memory is on the same access
level

➔ Especially on “big” servers where it’s not uncommon to have
2 CPUS
◆ And 2 memory zones

➔ Instead of having Unified Memory Access, we now have Non
Unified Memory Access

➔ Reaching memory in node 1 from CPU on node 0 is possible
◆ But more expensive

NUMA nodes

143

➔ Linux is NUMA aware
➔ numactl --hardware
➔ cat /proc/cpuinfo ; cpuinfo
➔ The scheduler runs in best-effort by default
➔ If a task has been running in a NUMA node, it will try to keep

it there
➔ Has some functions and data structure to perform its

NUMA assignation
➔ https://elixir.bootlin.com/linux/latest/source/kernel/sched/

fair.c#L1439

https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c#L1439
https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c#L1439

NUMA nodes

144

➔ But this best-effort mode can actually be not good enough
➔ Especially in some cases where the machine is quite loaded
➔ It might actually sometimes be a good trade to force a task

to run on a NUMA node
◆ Reducing its CPU & RAM capacities

➔ Good example: VMs on an hypervisor

NUMA nodes

145

➔ Possibility to visualize NUMA memory allocation
➔ numastat

◆ Has even a per-process information
◆ /proc/<pid>/numa_maps

➔ Possibility to set a NUMA policy
◆ set_mempolicy(2)
◆ sched_setaffinity(2) also
◆ Or via cgroups

Sidenote: Pushing
debug tools even
further
Carcinization of debugging tools

Advanced debug tools

147

➔ strace(1) is considered a debugging tool
◆ syscall oriented

➔ gdb(1) remains the “true and only debugger”
◆ Or is it ?

➔ gdb(1) while having tons of functionalities lacks a critical
component

➔ record & replay
➔ Mozilla introduces rr

rr

148

➔ The rr project is a debugger project built on top of GDB
➔ Not a replacement

◆ Allow you to keep using all the GDB features
◆ Not asking you to learn everything again

➔ rr works by recording your buggy software first
➔ Like strace(1), it will inspect closely what your program does
➔ Record it
➔ And provide a way to replay it, in the exact same context

rr

149

➔ Replaying the exact same session is very useful for a few
reasons:
◆ No need to make the user interact the same way

everytime
◆ Ability to catch a misfortune once and work on it

● Race conditions, thread problems, …
◆ Keep learned info in a debugging session across runs

(pointer values, etc)

“

150

Let’s check a quick example

rr

151

➔ rr was designed by Mozilla to debug firefox
➔ It’s able to debug complex software like firefox
➔ It has some limitations though

◆ Single core machine emulated
◆ x86 CPU
◆ some syscalls not tracked
◆ Can break on kernel update

rr - how does it work ?

152

➔ rr when started records everything to replay the exact same
session

➔ ptrace(2)
➔ seccomp(2)
➔ Because one of the thing rr tries to catch is race conditions

between threads, it must be able to catch them
➔ rr runs all thread on the same CPU core to be sure to

capture such events
◆ Impacts perf on heavily parallelized computation

rr - how does it work ?

153

➔ To be able to run all threads efficiently on the same core and
catch their output, rr is preemptive

➔ When a thread enters a syscall, ptrace(2) catches the syscall
and hand is given back to rr

➔ rr also periodically preempts threads with signals
➔ It chooses which thread to run while trying to respect linux

scheduler and its priorities

rr - how does it work ?

154

➔ When a program do a syscall, rr catches it because of
ptrace(2)

➔ It chooses to resume the syscall, but catches the return
value
◆ Like strace(1)

➔ It stores the syscall interaction in a replayable format
➔ It works for most syscalls, but ptrace(2) itself
➔ A process can only be ptrace-d once

◆ And firefox and many other already use ptrace(2) on
themselves

rr - how does it work ?

155

➔ rr emulates ptrace(2) syscall to bring compatibility
➔ rr has to deal with complex situations

◆ Ioctl
◆ Namespaces
◆ …

➔ To replay a recorded trace, ptrace(2) is also used
➔ rr replaces all syscalls with breakpoints

◆ It moves past the breakpoint, and set the return value
as recorded

rr - how does it work ?

156

➔ Some syscalls are harder to replay
◆ mmap(2) - you need to have the same address
◆ execve(2) - you have memory mappings that can

change (ASLR)
➔ rr has to trick or implement complex logic to properly

emulate them
➔ Asynchronous events must also be handled

◆ Signals, interrupts
➔ They must be sent at the exact same time

rr - how does it work ?

157

➔ rr is able to time precisely when async events occurs to
replay them the same way

➔ It relies on x86 specific performance counters
➔ rr must also catch race conditions happening on shared

memory
➔ As they describe, famous cases includes X server,

pulseaudio, GPU related function and vdso
➔ They disable shared memory for X and pulseaudio and

remove direct access for GPU
◆ Worse perfs, but ability to replay the bug

rr - how does it work ?

158

➔ For VDSO, rr live-patches vdso in the tracee address space
to replace VDSO calls to actual syscalls

➔ rr must also be able to catch non-deterministic CPU
instructions

➔ RDTSC is caught via prctl(2)
➔ RDRAND is rarely used, it’s replaced manually in the few

places found, but this is not caught by rr
➔ CPUID returns the core number, so sched_setaffinity(2) is

used to force a core

rr - how does it work ?

159

➔ For VDSO, rr live-patches vdso in the tracee address space to
replace VDSO calls to actual syscalls

➔ rr must also be able to catch non-deterministic CPU
instructions

➔ RDTSC is caught via prctl(2)
➔ RDRAND is rarely used, it’s replaced manually in the few places

found, but this is not caught by rr
➔ CPUID returns the core number, so sched_setaffinity(2) is used

to force a core
◆ These instructions might be handled differently is recent

versions thanks to CPUID faulting

rr - how does it work ?

160

➔ As a practical point of view, the trace created shall remain
quite small

➔ It’s compressed (and decompressed) on-the-fly by rr
➔ Shared libraries and binaries are stored via hard links or cow

mechanisms
➔ Because ptrace(2) introduces a context switch (from tracee

to tracer and vice-versa), and because it’s used twice per
syscall (before and after), it affects performances drastically
◆ But rr is clever

rr - how does it work ?

161

➔ To avoid running to many ptrace(2), rr injects a library in
each tracee

➔ The library overwrite syscalls wrappers
➔ The library performs the syscall, but write information to a

shared buffer, shared with rr
➔ It tries to catch most frequently used syscalls this way

◆ But fallbacks to the ptrace(2) + syscall in other cases
➔ … there are many other challenges solved by rr

◆ Read there paper explaining most of them

https://arxiv.org/pdf/1705.05937.pdf

rr - how does it work ?

162

➔ The master of engineering put in rr leads to a very practical
tool

➔ The overhead it adds is about 20% on firefox
➔ If firefox takes 10min to perform a task, it will take 12min

max with rr as observed
➔ All these elements make rr also very powerful with fuzzers

Memory
overcommiting
Let’s go beyond limits

Memory overcommiting

164

➔ /proc/meminfo also has some metrics about virtual memory
➔ On linux, you can over-allocate

◆ vm.overcommit_memory + vm.overcommit_ratio
➔ An allocation in virtual memory != necessarily bound to

physical memory
◆ It is if it’s used, meaning written to

➔ Useful because softwares tend to allocate more than they
actually use
◆ That’s also a reason why you’ll unlikely see a negative

answer from malloc(3)

Memory overcommiting

165

➔ 3 overcommitting modes possible:
◆ 0 -> heuristic, let the kernel decide (default)
◆ 1 -> always allow, never check
◆ 2 -> always check

➔ In /proc/meminfo:
◆ Committed_AS is the sum of all committed (allocated

virtual memory for all processes)
◆ CommitLimit is the maximum amount of memory

allocatable
● Makes sense in mode 2 only

Memory overcommiting

166

➔ Overcommitment lead to memory limit being hit before a
memory allocation syscall fails

➔ Checking return value of malloc(3) won’t guarantee the
memory is yours

➔ You will trigger the OOM-killer in fact
➔ Still check return value …

memory metrics

167

➔ Other metrics are also available in:
◆ /proc/vmstat
◆ /proc/swap
◆ /proc/buddyinfo
◆ ….

➔ Also some per-process metrics
◆ /proc/<pid>/maps
◆ …

Can we pause a
minute and finally
explain /proc ?
A small dive in pseudofilesystems

What is a filesystem?

169

➔ A regular filesystem should be a well known notion
➔ A disk (HDD, SSD, …) is exposed as a block device on linux

◆ Special file, allows “raw” access to the disk
● Not quite, but let’s keep this definition

➔ To be used as one would expect (put directories, files, etc), a
filesystem must be created on the disk

➔ A filesystem is a data layout specs
◆ A data structure
◆ And its driver
◆ Integrated in linux through abstraction interfaces

What is a filesystem?

170

➔ Different kinds of filesystems with different approaches, pros
and cons
◆ FAT, EXT4, XFS, ZFS, BTRFS, NFS, NTFS, …
◆ Can be thought for the network (NFS, CEPHFS, GLUSTERFS, …)
◆ Can have built-in snapshot mechanisms
◆ Can have a journal
◆ Can support extended attributes
◆ Is more or less subject to fragmentation
◆ …

What to do with a filesystem?

171

➔ Once your disk is formatted with a filesystem, it can be used
➔ With windows, it’s directly accessible with a letter (C:, D:, ..)

◆ It’s simpler for them, but also kind of stupid
◆ No unified hierarchy
◆ What about letter conflicts ?

➔ In linux, you have only one hierarchy: the Virtual FileSystem

Linux VFS
One hierarchy to rule them all

Linux VFS

173

➔ On linux there is no disk drive letter, only “/”, the root
➔ Linux maintain internally the VFS, a unified file hierarchy
➔ You can put a disk filesystem somewhere in the VFS

◆ This operation is called mounting
➔ Everything under the mount point will be bound to the

filesystem
◆ Read, writes, etc

➔ It’s common to have the root of the VFS mounted on a disk
partition

➔ The VFS is what you can see when “exploring files” on linux

Linux VFS

174

➔ The VFS is the concept that allows having multiple physical
storage support under the same hierarchy

➔ It allows an abstraction of the actual operations performed
to the user

Linux VFS

175

➔ The linux VFS is tightly tied to the concept of UNIX filesystem
➔ It was indeed built on top of the ext2 filesystem
➔ A UNIX filesystem in short is built with 4 concepts:

◆ Files
◆ Directory entries
◆ Inodes
◆ Mount points

Linux VFS

176

➔ If you want to access your USB key for example, you need:
◆ To have a filesystem created on your disk, or on a

partition
● The filesystem needs to be compatible with your OS

◆ To mount this filesystem somewhere in your VFS
● If it’s just to access its files, you should put it

somewhere it doesn’t impact your system, like /mnt

Linux VFS - mount

177

➔ To mount a filesystem in the VFS, one can use mount(1)
➔ This command (and its underlying syscall) will take a source

device, and add it in the VFS at some path
◆ This means that everything that used to be on this path

and below isn’t directly accessible anymore
● It is still accessible by tricking
● Opened files stay open, and modification are

propagated

Linux VFS - mount

178

➔ The source device is usually a block device (a hard drive), but
it can also be something else, like:
◆ A network address, when mounting a NFS partition for

example (or glusterfs, cephfs, etc)
◆ A special kind of source known as a pseudo-filesystem

➔ You can check the supported filesystem in /proc/filesystem
◆ Filesystem marked with “nodev” means that they don’t

need a block device

Pseudo filesystem
Some filesystems are not like the others

Pseudo filesystem

180

➔ A filesystem is usually meant to store and access files
➔ But in Unix philosophy, everything is considered a file, even if

it’s not truly is one
➔ For example, you might know the special file /dev/zero or

/dev/null
➔ There is no such infinite file on your disk than you can read

forever, or write to without it being actually written
➔ This is an interface the kernel exposes you

Pseudo filesystem

181

➔ When doing a open() syscall, the kernel will do a few things
like checking the path, permissions, etc …

➔ Then it will dispatch the syscall to the driver responsible for
the file
◆ If the file is on an ext4 partition for example, we need to

run code specific to ext4 data structure (which is in the
end what a filesystem is)

Pseudo filesystem

182

➔ We could come up with a special filesystem driver, that will
execute functions for us depending on the file we read/write

➔ For example, a file that will execute this function when read:

This is obviously pseudo-code
and not the actual linux
implem of /dev/zero

Pseudo filesystem

183

➔ We can go a bit further, and imagine this as a whole interface
➔ For example, /proc
➔ It’s a pseudo filesystem mounted in /proc called procfs
➔ procfs exposes information about processes and various

other runtime information
◆ meminfo, filesystems supported, etc

➔ When reading a file there, you actually run kernel code that
generates a response for you

➔ There is no disk space taken, only RAM for the responsible
kernel code

Pseudo filesystem - procfs

184

➔ procfs goal is quite easy to understand, and is mostly
read-only to return kernel runtime values

➔ But we can have other filesystems a bit more complex
➔ procfs for example which role is to expose current kernel

parameters and settings for many things (memory, network,
etc).
◆ They can be read, but also written to, to dynamically

change the kernel behaviour
◆ You can for example disable IPv6, drop memory caches,

etc ….

Pseudo filesystem - procfs

185

➔ procfs is more or less the config interface for the kernel, with
the command line

➔ Regularly used with sysctl(1) binary

Pseudo filesystem - tmpfs

186

➔ tmpfs is a very useful pseudofilesystem
➔ Everything inside is stored in RAM

◆ Very fast accesses
◆ volatile , reboot = data gone
◆ Usually mounted at least in /tmp

➔ When mounting this pseudofilesystem, size argument used
to give the maximum size
◆ Defaults to half the RAM

Pseudo filesystem - devfs

187

➔ devtmpfs is also a well known pseudo filesystem expected to
be mounted on all platforms, on /dev

➔ It’s a bit special, being a tmpfs, another pseudofilesystem,
but with special behaviour

➔ It differ from tmpfs by having automatically linux driver
register block devices they create in the filesystem

➔ /dev – or devtmpfs – contains a block and chardevices:
◆ Your disks – and their partition(s) if any
◆ Special files like zero, null, urandom, kmsg …
◆ Your tty(s)
◆ ….

Pseudo filesystem - cgroups

188

➔ Another pseudofilesystem you might have encountered
already is the cgroups (v1 or v2) fs

➔ Interface to manipulate the control groups
➔ Use extensively by systemd, docker, etc …
➔ Let’s not get into too many details here

Understanding VFS
structure
Will be useful to understand some
metrics and do advanced monitoring

The VFS structure

190

➔ The linux VFS is tightly tied to the concept of UNIX filesystem
➔ It was indeed built on top of the ext2 filesystem
➔ A UNIX filesystem in short is built with 4 concepts:

◆ Files
◆ Directory entries
◆ Inodes
◆ Mount points

The VFS structure

191

➔ The UNIX filesystem build those 4 representations this way:
◆ File

● A file is a set of bytes, and doesn’t contain metadata
● A directory is a special kind of file that lists its

content
◆ Inode

● An inode represents the metadata of a file. It has a
unique number in a given filesystem

◆ Mount points - or superblock
● Contains metadata information for the whole fs

The VFS structure

192

➔ The UNIX filesystem build those 4 representations this way:
◆ Dentry

● Directory Entry
● Represents the components of a path

The VFS structure

193

➔ The VFS will be built on those 4 unix concepts
➔ Any filesystem not implementing a concept listed above will

have to provide a compatibility layer
◆ The driver will have to create one of those concept

on-the-fly
◆ With some (usually) negligible overhead

➔ Those are requirements for the VFS

The VFS structure

194

➔ The VFS is the abstract representation exposed to the user,
more or less indirectly

➔ It needs to be abstract and compatible with any “backend”
➔ Which means its structure must be able to interact with any

actual filesystem implementation
◆ For pseudo-filesystems implemented in linux, it’s trivial,

but for external ones, harder
➔ The VFS can be complicated with many mounts, filesystems

mounted in multiple places, etc

The VFS structure - super_block

195

➔ The UNIX filesystem concept of a superblock is mapped to a
struct super_block in the VFS

➔ https://elixir.bootlin.com/linux/latest/source/include/linux/fs
.h#L1451

➔ This struct contains information about a mount point
➔ It contains a struct super_operations that will provide

functions to filesystem-specific pointers for the
filesystem-specific operations
◆ https://elixir.bootlin.com/linux/latest/source/include/lin

ux/fs.h#L2222

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L1451
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L1451
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2222
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2222

The VFS structure - super_block

196

➔ The super_block is usually a mapping to the filesystem’s
control block of superblock, stored on the disk for regular
filesystems
◆ The metadata information for a filesystem
◆ How many files, its size, …
◆ Generated on-the-fly for pseudo-filesystems

➔ Contains also run-time information for the mount-point
◆ Is frozen ? Is dirty ? Mount flags, …

● Frozen = block write operation on a fs

The VFS structure - super_block

197

➔ Its operations struct will allow operations of the super_block
itself
◆ Sync to the disk, remount, freeze, get statistics, …

➔ But also on the inodes it handles
◆ Create, delete, dirty, …

➔ Having the super_operations allows genericity in the
manipulation of super_block object, but filesystem-specific
implementations of such operations

The VFS structure - inode

198

➔ Implemented in the VFS as the struct inode
◆ https://elixir.bootlin.com/linux/latest/source/include/lin

ux/fs.h#L593
➔ Also contains a struct for an inode’s operation

◆ include/linux/fs.h - Bootlin
➔ This struct contains information about an inode (file

metadata)
➔ The inode content is written on the disk but the struct is

generated when the file is accessed

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L593
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L593
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2137

The VFS structure - inode

199

➔ Since an inode is generic for all files, and in UNIX everything is
a file, struct inode contains a union for specific files
◆ i_pipe, i_bdev, i_cdev

➔ An inode contains quite some fields that can be omitted in a
driver implementation
◆ For example i_atime

➔ Operations includes:
◆ create, mkdir, mknod, symlink, permissions, …

➔ No read, write !

The VFS structure - file

200

➔ It is important to distinguish a file from the UNIX filesystem
concept to the struct file, aka the VFS file concept

➔ A UNIX file is what people usually understand by a file
◆ Without the metadata

➔ A struct file represents a per-process file interaction
➔ A struct file is what process usually interact with

◆ Especially a file.f_op
➔ include/linux/fs.h - Bootlin

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L940

The VFS structure - file

201

➔ A struct file is created by open(2)
➔ A process can have multiple struct files pointing to the same

UNIX file, the same inode
➔ The struct inode it however unique
➔ Its operations are all the operations you think about when

thinking about file manipulation from a process
◆ read, write, llseek, ioctl, mmap, …

The VFS structure - dentry

202

➔ The difference between the kernel and users for files are how
there are identified

➔ A user (usually) identifies a file by its path
◆ open(2) syscall for example

➔ The kernel by an inode number
◆ The path is used to translate to this inode concept
◆ The same file (same inode) can have multiple paths for

example
➔ A file is a generic term and can have multiple types, including

being a directory

The VFS structure - dentry

203

➔ Each component of a path is decomposed in objects called
dentry

➔ /bin/bash is .. 3 dentry objects
◆ /, bin and bash
◆ The first 2 are dentry representing a directory, the latest

is a regular file
➔ A dentry object is a VFS specific object. There’s no direct

information about underlying object pointed by it
➔ struct dentry

https://elixir.bootlin.com/linux/v5.19.12/source/include/linux/dcache.h#L81

The VFS structure - dentry

204

➔ The role of the dentry object is to ease the user manipulation
of file and directories

➔ Those operations are costly
◆ String manipulation
◆ Need to check if valid
◆ Check its subcomponents
◆ …

➔ The dentry object is really meant to represent a path
➔ A mount point, a directory, a file will have a struct dentry

◆ When needed

The VFS structure - dentry

205

➔ The role of the dentry object is to ease the user manipulation
of file and directories

➔ Those operations are costly
◆ String manipulation
◆ Need to check if valid
◆ Check its subcomponents
◆ …

➔ The dentry object is really meant to represent a path
➔ A mount point, a directory, a file will have a struct dentry

◆ When needed

The VFS structure - dentry

206

➔ A dentry can be positive or negative
◆ A positive ones means it has an inode associated to it
◆ A negative one is the opposite

➔ A negative dentry (because the path is wrong for example)
can be kept in cache to resolve queries quicker

➔ A dentry can also be considered as used or unused via
d_count
◆ d_count counts the number of active reference to the

associated inode
● Meaning if there are active users of the object

The VFS structure - dcache

207

➔ All those presented mechanisms lead to an obvious design:
dcache

➔ dcache is a cache mechanism to store, access and remove
dentry objects to have quicker accesses to files

➔ dcache keeps track of dentry objects, in both active (used)
state, and inactive (unused but valid) and negative state
(invalid)

➔ It provides a hash table to have quick access
◆ d_lookup()

The VFS structure - dentry

208

➔ The struct dentry also contains an operation struct
◆ https://elixir.bootlin.com/linux/v6.0.7/source/include/lin

ux/dcache.h#L127
➔ The operations of a dentry includes:

◆ revalidate, hash, compare, …

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/dcache.h#L127
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/dcache.h#L127

struct dentry

209

210

➔ All structs
pointed by
struct dentry

211

➔ All structs
pointed by
struct dentry
◆ With

“useless”
structs
removed

212

➔ All structs from
struct dentry in
a 2 elements
range
◆ With

“useless”
structs

213

➔ All structs from
struct dentry in
a 2 elements
range
◆ With

“useless”
structs
removed

214

➔ For fun: All
structs from
struct dentry in
a 10 elements
range

215

➔ For fun: All
structs from
struct dentry in
a 50 elements
range

VFS observability
How can we observe what is going on
with the VFS ?

Observe the VFS

217

➔ The main interface is /proc/sys/fs
➔ We have for example dentry-state

◆ Exposes the content of dentry_stat_t
◆ https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.

c#L118
➔ file-max

◆ https://elixir.bootlin.com/linux/v6.0.7/source/include/ua
pi/linux/fs.h#L97

➔ A few other interfaces, but yet limited

https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.c#L118
https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.c#L118
https://elixir.bootlin.com/linux/v6.0.7/source/include/uapi/linux/fs.h#L97
https://elixir.bootlin.com/linux/v6.0.7/source/include/uapi/linux/fs.h#L97

Observe the VFS

218

➔ The VFS is hardly observable, and actually matters less than
actual filesystem underneath

➔ Syscall to get some information about a filesystem: statfs(2)
◆ Actually the recommended glibc wrapper in statvfs(3)

➔ Hardly any other interfaces for filesystems :/
➔ What is to be observed would mostly be I/O on actual

physical devices
➔ It is frustrating because there are quite some structs,

operations going on
◆ But no interfaces …

eBPF
Let’s talk about the elephant in the
room

Linux observability

220

➔ Most of this course has been focusing on two things:
◆ Understanding linux kernel mechanisms
◆ Understanding how to observe them

● And observability in general
➔ For the past years, a fancy term appeared and is mentioned

frequently
◆ Everytime one talk about linux and observability in the

same sentence
◆ On lots of cool, modern and alpha projects

eBPF

221

➔ eBPF is relatively new feature added to linux “recently”
➔ It is actually an extension of a feature existing in the kernel

for years: BPF
◆ Berkeley Packet Filter

● Berkeley being the same as in Berkeley sockets or
BSD

◆ Now it’s extended BPF

Getting to know BPF

222

➔ eBPF is a newer and more powerful BPF
◆ But what is BPF already ?

➔ BPF is an old project that has its roots in BSD
➔ It’s from the early 1990
➔ It has been integrated in Linux in the beginning of the 2000’s

◆ Around linux 2.5
➔ It has since been evolving gradually to become what is know

known as eBPF

Getting to know BPF

223

➔ BPF until the 2010’s had a simple purpose: filter network
paquets

➔ It comes with a virtual machine running in kernel land
➔ It executes BPF scripts

◆ BPF scripts are small programs with special instructions
◆ It’s not x86 (or else) instructions directly

➔ Scripts are limited
➔ Used by tcpdump for example

Getting to know BPF

224

Getting to know BPF

225

Getting to know BPF

226

➔ Executing code dynamically in the kernel in a virtual machine
looks very interesting

➔ One could want to execute more than just packet filtering
➔ Maybe report information about the packets to userland ?
➔ Maybe include some packet manipulation ?

◆ Even dropping them ?
➔ Etc …
➔ As ideas came along, BPF subsystem grew

From BPF to eBPF: internal BPF

227

➔ The virtual machine idea looked seducing
➔ A JIT was introduced to compile BPF instruction to x86

instructions
◆ So it was fast

➔ BPF had too many limitations, like the number of registers
available (2), no 64 bits registers, …

➔ 2 BPFs were created: classic BPF and internal BPF
➔ Internal BPF was more powerful, but was hidden from

userspace

From BPF to eBPF: internal BPF

228

➔ The only interface was for classic BPF
➔ Classic BPF was then transformed in internal BPF in the

kernel
◆ Faster, using x86 instructions directly, …

➔ But the idea of exposing an interface for internal BPF to
userland was already there

➔ The goal was also to work on GCC/LLVM to generate internal
BPF directly

➔ Internal BPF was also able to call some limited set of kernel
functions

From BPF to eBPF: internal BPF

229

➔ Internal BPF was also starting to draw attention for tracing
➔ Could be useful to use this dynamic language and virtual

machine to run more things dynamically
◆ No more real connection with the network

➔ BPF moved from the net/ to kernel/bpf
◆ Removed also some ties with network as well

➔ This internal BPF was then renamed as eBPF for extended
BPF

eBPF evolution

230

➔ What happened after ?
➔ bpf(2) syscall was introduced
➔ Load a BPF program in the kernel
➔ Of course, huge restrictions:

◆ We can’t run arbitrary code in the kernel
◆ We can’t call any function
◆ We can’t have a loop
◆ We can’t sleep

eBPF evolution

231

➔ The introduction of the bpf(2) syscall also introduce a BPF
verifier:
◆ Tries to prevent harmful programs from being loaded
◆ Things mentioned on the previous slide
◆ But also read from unallocated registers, bound checks,

etc
➔ Obviously a privileged syscall requiring CAP_SYS_ADMIN

(until 5.8 when CAP_BPF was added)

eBPF evolution

232

➔ Added feature to eBPF at that time was also maps
➔ eBPF maps are key/value store to exchange data from kernel

to userland
◆ They are created from userland though

● Via a call to bpf(2) too
● But not directly from a running eBPF program

eBPF evolution

233

➔ eBPF evolutions since 2014
◆ Adding persistent eBPF programs
◆ Adding a pseudo filesystem for eBPF (called bpf)
◆ Adding different types of eBPF programs

● Few related to network traffic
● One to change socket(2) types
● Few related to monitoring

◆ Adding types of maps

eBPF evolution since 2014

234

➔ Adding support to authz sysctl via eBPF
➔ Ability to dump kernel structures
➔ Allow sleepable eBPF programs
➔ Ability to call some restricted kernel functions
➔ Control scheduler decisions
➔ Allow to loop (with still quite some restrictions)
➔ ….

Running eBPF
How can one create and run such
magical programs ?

How to run eBPF ?

236

➔ An eBPF program is setup in the kernel via bpf(2)
➔ It is checked, verified and then installed
➔ It can be referenced via an ID
➔ But a call to bpf(2) doesn’t run the program
➔ An ePBF program doesn’t run when userland asks for it to

run
➔ An eBPF program is linked to an event, and is started from

this event
◆ Like classic BPF, when a socket receives data for

example

The bpf(2) syscall

237

➔ All interactions with (e)bpf goes through the bpf(2) syscall
➔ The design intended to have only a single syscall for all

operations
◆ Like ioctl(2)

➔ First argument is the cmd:
◆ Create, read elem, update elem, delete elem for maps
◆ Load a eBPF program

The bpf(2) syscall

238

➔ A map to create must also have a type
◆ BPF_MAP_TYPE_HASH
◆ BPF_MAP_TYPE_ARRAY
◆ BPF_MAP_TYPE_STACK_TRACE
◆ …

➔ All map types don’t behave the same way
➔ Read the documentation for specifics
➔ Same goes for eBPF programs

◆ Different types for different usages
◆ Changes in the verifier and capacities of your program

“ Ok but why the fuss
around eBPF ?

239

eBPF in action
Checkout why eBPF rhymes with
observability

Linux kernel’s own javascript

241

➔ eBPF is great because it adds dynamicity to the kernel
◆ Could be seen as the equivalent of javascript, but for the

kernel
➔ There’s no intention of putting cats animation in the kernel

though
➔ But instrumentality and observability is another subject
➔ Let’s discover a few eBPF project

eBPF projects

242

➔ Netdata kernel collector
◆ Collects metrics and allow monitoring on events that

were inaccessible so far
◆ Process-related, VFS, hardirqs, softirqs, shmem,

sync-related syscalls, file access, mount,
network-related, TCP-related internal functions calls, …

eBPF projects

243

➔ iovisor/bcc
◆ Toolkit to manipulate eBPF easily: write eBPF programs

in C-like language and compiled with LLVM, front-end for
eBPF programs with python or lua

◆ Comes with pre-defined tools to monitor, trace, snoop a
machine

244

eBPF projects

245

➔ Cilium
◆ Kubernetes-related projects for network
◆ CNI to bring eBPF-aware networking to Kubernetes

with:
● Loadbalancing
● Network policy L7 aware
● …

◆ Hubble for observability in Kubernetes networking
related stack
● Metrics, tracing

eBPF projects

246

➔ Check a bigger, updated and more detailed list on
https://ebpf.io/applications/

➔ Those projects look awesome and very promising
➔ The ability to expose metrics un-exposable otherwise is

astonishing
➔ But how exactly is this possible ?

◆ Let’s stop with the vagueness around observability and
eBPF and let’s dig into implementation details

https://ebpf.io/applications/

kprobes, uprobes,
tracepoints, …
They were there all along !

Probes and tracepoints

248

➔ Before “modern” monitoring like eBPF allow us to do, there
were already concepts in the kernel to get events
◆ From the early 2000’s

➔ It was mostly for instrumentation and debugging than
observability

➔ Mostly aimed for kernel developers at first
➔ Then brought to more people

Probes and tracepoints

249

➔ There are 2 categories of event source in the kernel
◆ Dynamically defined tracing points (Probes)
◆ Statically defined tracing points (Tracepoints)

➔ Linux offers:
◆ Tracepoints
◆ Kprobes

➔ But also for userland:
◆ Uprobes
◆ (USDT)

Probes and tracepoints

250

Probes and tracepoints

251

Probes and tracepoints

252

➔ Probes and Tracepoints are to collect “data”
➔ The way there are used, called and how the data is then

exposed depends on the tracing framework
➔ eBPF is, among other things, a tracing framework
➔ iovisor/bcc presented briefly is a front-end

Probes and tracepoints

253

➔ What is the difference between kprobes and tracepoints ?
➔ Tracepoints are defined statically

◆ TRACE_EVENT macro in the kernel
➔ They had no overhead if disabled

◆ Except for a small comparison
➔ Once enabled, notify with info observers

Probes and tracepoints

254

➔ What is the difference between kprobes and tracepoints ?
➔ kprobes are defined dynamically
➔ They don’t require a “kprobe” event to be defined in the code
➔ You can compare it to a breakpoint with your debugger
➔ You can place it almost everywhere

◆ Beginning and end of functions via k(ret)probe
➔ It replaces an instruction to be executed by an INT3
➔ The kprobe handler will check from where the trap comes

from
➔ It will then report what is needed to the kprobe subscriber(s)

Tracing framework
A probe on its own is hardly usable

Tracing framework

256

➔ Probes and tracepoints reports data to a subscriber
➔ The subscriber is defined by the tracing framework used
➔ One example: eBPF
➔ eBPF allow you to define a small program and attach it to a

probe/tracepoint
➔ Once the probe is fired, it calls your eBPF program

◆ Argument to the probes are forwarded to your program
◆ You can sometimes instrument them
◆ Or do some logic and report things

Tracing framework

257

➔ Only a limited amount of tracing frameworks are available in
linux

➔ eBPF, ftrace and perf_event are the 3 main choices
◆ There are also out-of-tree options (SystemTap, lttng, …)

ftrace

258

perf_event

259

eBPF

260

Frontends
Let’s build some fancy tool on top of
these

Frontends

262

➔ There are multiple frontends options for each framework
➔ The frontend usually is meant to leverage the framework

easily
➔ Write human-readable code, and compile it in eBPF bytecode

for example
➔ Provide awk-like scripts
➔ Essentially a simplification of the interfaces and syscalls

◆ Sometimes shipped with a library in a given language

Frontends

263

➔ Quite some frontends can be named:
◆ Perf (for perf framework and ftrace)
◆ trace-cmd
◆ Bcc
◆ Bpftrace
◆ LTTng
◆ SystemTap
◆

Frontends

264

nsswitch digression
Understanding glibc behavior as seen by
strace(1)

nsswitch

266

➔ Unix world offers a few files to handle its system
configuration

➔ Examples of those includes /etc/passwd, /etc/group,
/etc/hosts, …

➔ While those files works great and suit basic behavior, there
are still a bit limited

➔ What if we wanted to handle servers’ access for the
employees of a company ?
◆ There are hundreds of employees, thousands of systems
◆ Handling each system individually is difficult and tedious

nsswitch

267

➔ How can we extend this behavior to use other kind of
services in order to provide those information ?

➔ For example, connect to a database to get user information
◆ LDAP is a famous protocol for this

➔ How to handle a DNS system a bit more clever than a simple
/etc/hosts + /etc/resolv.conf ?
◆ With cache
◆ With per-interface domain resolution for example
◆ …

nsswitch

268

➔ GNU C Library allow us to extend and change the default
behavior via a configuration file, /etc/nsswitch.conf

➔ nsswitch, for Name Service Switch in part of the glibc
◆ And also introduced in other software due to its

popularity
➔ The /etc/nsswitch.conf allow to change the configuration on

how to find such Name Service information
➔ It has a pluggable approach, with shared libraries

◆ Anyone can write a plugin to plug in the nsswitch system

nsswitch.conf(5)

269

➔ Default /etc/nsswitch.conf contains the basic configuration
to use the default plugins for traditional UNIX config files

nsswitch.conf(5)

270

nsswitch.conf(5)

271

➔ Default /etc/nsswitch.conf contains the basic configuration to
use the default plugins for traditional UNIX config files

➔ It has a simple format:
◆ Name service: <plugin 1> <plugin 2> …

● There are some limited option to add on each plugin
also

➔ Let’s check a few classic configurations

nsswitch.conf(5)

272

➔ passwd: files systemd ldap
➔ For the passwd name service, first is to check with the files

plugin
➔ The files plugin is implemented via /usr/lib/libnss_files.so.2
➔ It implements the default UNIX behavior, by looking in

/etc/passwd
➔ The next data source is implemented by libnss_systemd.so.2

◆ It implements a connector to ask systemd(1) or some
specific systemd service via a systemd API information

◆ nss-systemd(8)

nsswitch.conf(5)

273

➔ passwd: files systemd ldap
➔ ldap is provided by nslcd and its libnss_ldap.so.2
➔ Used to query nslcd daemon which connect to remote

configurable LDAP server and gets users, passwords and
groups from

➔ Because of the multiple ways of finding passwd information
(different name services), cat /etc/passwd is not enough

➔ Prefer using getent passwd

nscd digression
Understanding glibc behavior as seen by
strace(1)

nscd

275

➔ On top of described behavior by nsswitch and glibc, another
mechanism exists to provide cache for name service queries

➔ While /etc/passwd file for example is pretty much
inexpensive to read, DNS queries or LDAP connection are
expensive

➔ Having cache for them is great
➔ It’s the role of nscd to provide such cache

◆ Hence its name, Name Service Cache Daemon

nscd

276

➔ nscd as its name indicates is a daemon
◆ It might not be installed on your machine, or not running

➔ It exposes a UNIX socket in /var/run/nscd/socket
➔ By default, the glibc connects to this socket automatically

◆ Before contacting a name service source as provided by
/etc/nsswitch.conf

➔ If the socket can’t be opened, it … retries a second time
➔ If nscd is not running, or doesn’t have the info in cache, it falls

back to the default nsswitch mechanism

nscd

277

nscd

278

➔ In previous example
➔ nscd is answering
➔ Answers with a pointer to a shared memory to mount, that

contains the asked database
➔ mmap(2) right under

nscd

279

Thanks !
Questions ?

280

Slides available on zarak.fr/

Contact: cyril@cri.epita.fr
zarak production#5492

281

Sources
lwn.net/Articles/904892/ - The ABI status of ELF hash tables [LWN.net]
lwn.net/Articles/330589/ - KSM tries again [LWN.net]
lwn.net/Articles/229096/ - SLUB: The unqueued slab allocator V6 [LWN.net]
lwn.net/Articles/288056/ - TASK_KILLABLE [LWN.net]
lwn.net/Articles/379748/ - Huge pages part 5: A deeper look at TLBs and costs
[LWN.net]
lwn.net/Articles/317814/ - Taming the OOM killer [LWN.net]
lwn.net/Articles/83588/ - 2.6 swapping behavior [LWN.net]
lwn.net/Articles/82759/ - Kernel development [LWN.net]
lwn.net/Articles/793073/ - (hopefully) saner refcounting for mountpoint dentries
[LWN.net]
lwn.net/Articles/330985/ - driver-core: devtmpfs - driver core maintained /dev tmpfs
[LWN.net]
lwn.net/Articles/331818/ - The return of devfs [LWN.net]
lwn.net/Articles/612878/ - The BPF system call API, version 14 [LWN.net]282

Sources
lwn.net/Articles/870269/ - Taming the BPF superpowers [LWN.net]
lwn.net/Articles/664688/ - Persistent BPF objects [LWN.net]
lwn.net/Articles/740157/ - A thorough introduction to eBPF [LWN.net]
lwn.net/Articles/779120/ - Concurrency management in BPF [LWN.net]
lwn.net/Articles/787856/ - BPF: what's good, what's coming, and what's needed
[LWN.net]
lwn.net/Articles/785263/ - Managing sysctl knobs with BPF [LWN.net]
lwn.net/Articles/803890/ - Filesystem sandboxing with eBPF [LWN.net]
lwn.net/Articles/818714/ - Dumping kernel data structures with BPF [LWN.net]
lwn.net/Articles/825415/ - Sleepable BPF programs [LWN.net]
lwn.net/Articles/856005/ - Calling kernel functions from BPF [LWN.net]
lwn.net/Articles/873244/ - Controlling the CPU scheduler with BPF [LWN.net]
lwn.net/Articles/794934/ - Bounded loops in BPF for the 5.3 kernel [LWN.net]
lwn.net/Articles/132196/ - An introduction to KProbes [LWN.net]

283

Sources
lwn.net/Articles/346470/ - Fun with tracepoints [LWN.net]
lwn.net/Articles/379903/ - Using the TRACE_EVENT() macro (Part 1) [LWN.net]
github.com/brendangregg/perf-tools/blob/master/kernel/kprobe - perf-tools/kprobe at master ·
brendangregg/perf-tools
jvns.ca/blog/2017/07/05/linux-tracing-systems/ - Linux tracing systems & how they fit together
terenceli.github.io/%E6%8A%80%E6%9C%AF/2020/08/05/tracing-basic - Linux tracing - kprobe, uprobe and
tracepoint
github.com/iovisor/bcc - iovisor/bcc: BCC - Tools for BPF-based Linux IO analysis, networking, monitoring, and
more
oreilly.com/library/view/understanding-the-linux/0596005652/ch04s07.html - 4.7. Softirqs and Tasklets -
Understanding the Linux Kernel, 3rd Edition [Book]
 docs.kernel.org/scheduler/index.html - Linux Scheduler — The Linux Kernel documentation
github.com/0xAX/linux-insides - GitHub - 0xAX/linux-insides: A little bit about a linux kernel
kernel.org/doc/html/latest/admin-guide/mm/hugetlbpage.html - HugeTLB Pages — The Linux Kernel
documentation
kernel.org/doc/html/latest/admin-guide/mm/idle_page_tracking.html - Idle Page Tracking — The Linux Kernel
documentation

284

Sources
baeldung.com/linux/process-states - Linux Process States | Baeldung on Linux
haydenjames.io/what-is-iowait-and-linux-performance/ - What is iowait and how does it affect Linux
performance?
unix.stackexchange.com/questions/16738/when-a-process-will-go-to-d-state - linux - When a process will go
to 'D' state? - Unix & Linux Stack Exchange
stackoverflow.com/questions/71862781/how-to-make-a-process-to-enter-d-state - linux - How to make a
process to enter D state? - Stack Overflow
unix.stackexchange.com/questions/539733/what-are-the-non-numeric-irqs-in-proc-interrupts - linux kernel -
What are the non-numeric IRQs in /proc/interrupts? - Unix & Linux Stack Exchange
elixir.bootlin.com/linux/latest/source/arch/x86/include/asm/irq_vectors.h - irq_vectors.h -
arch/x86/include/asm/irq_vectors.h - Linux source code (v5.19.2) - Bootlin
blog.dixo.net/irq.png
alexonlinux.com/smp-affinity-and-proper-interrupt-handling-in-linux - SMP affinity and proper interrupt
handling in Linux - Alex on Linux
kernel.org/doc/html/latest/admin-guide/mm/ksm.html - Kernel Samepage Merging — The Linux Kernel
documentation

285

Sources
kernel.org/doc/html/latest/RCU/whatisRCU.html - What is RCU? – “Read, Copy, Update” — The Linux Kernel
documentation
zeph1912.github.io/notes_and_journal_repo/kernel_softirq.html - Softirq | Zephyr’s study notes
unix.stackexchange.com/questions/591243/counting-the-number-of-issued-syscalls -
linux - Counting the number of issued syscalls - Unix & Linux Stack Exchange
rr-project.org/ - rr: lightweight recording & deterministic debugging
man7.org/linux/man-pages/man7/shm_overview.7.html - shm_overview(7) - Linux manual page
Linux-kvm.org - KVM
man7.org/linux/man-pages/man2/prctl.2.html - prctl(2) - Linux manual page
man7.org/linux/man-pages/man5/core.5.html - core(5) - Linux manual page
kernel.org/doc/html/latest/admin-guide/mm/index.html - Memory Management — The Linux Kernel
documentation
kernel.org/doc/html/latest/admin-guide/mm/concepts.html - Concepts overview — The Linux Kernel
documentation
llwn.net/Articles/306704/ - /dev/ksm: dynamic memory sharing [LWN.net]
kernel.org/doc/html/latest/admin-guide/mm/numa_memory_policy.html - NUMA Memory Policy — The Linux
Kernel documentation286

Sources
kernel.org/doc/html/latest/admin-guide/mm/numaperf.html - NUMA Locality — The Linux Kernel
documentation
kernel.org/doc/html/latest/admin-guide/mm/pagemap.html - Examining Process Page Tables — The Linux
Kernel documentation
kernel.org/doc/html/latest/admin-guide/mm/swap_numa.html - Automatically bind swap device to numa node
— The Linux Kernel documentation
kernel.org/doc/html/latest/admin-guide/mm/zswap.html - zswap — The Linux Kernel documentation
stackoverflow.com/questions/7880784/what-is-rss-and-vsz-in-linux-memory-management - What is RSS and
VSZ in Linux memory management - Stack Overflow
tothenew.com/blog/understanding-memory-utilization-in-linux/ - Understanding Memory Utilization in Linux |
TO THE NEW Blog
man7.org/linux/man-pages/man7/user_namespaces.7.html - user_namespaces(7) - Linux manual page
redhat.com/sysadmin/dissecting-free-command - Dissecting the free command: What the Linux sysadmin needs
to know | Enable Sysadmin
kernel.org/doc/gorman/html/understand/understand011.html - Slab Allocator
man7.org/linux/man-pages/man5/slabinfo.5.html - slabinfo(5) - Linux manual page

287

Sources
linuxize.com/post/free-command-in-linux/ - Free Command in Linux | Linuxize
man7.org/linux/man-pages/man5/procfs.5.html - proc(5) - Linux manual page
tecmint.com/linux-process-management/ - All You Need To Know About Processes in Linux [Comprehensive
Guide]
devm.io/programming/linux-process-states-173858 - What are the process states in Unix/Linux?
stackoverflow.com/questions/67769737/check-if-the-process-in-in-running-state-or-runnable-state-in-linux -
Check if the process in in RUNNING state or RUNNABLE state in Linux - Stack Overflow
elixir.bootlin.com/linux/latest/ident/task_struct - task_struct identifier - Linux source code (v5.19.5) - Bootlin
elixir.bootlin.com/linux/latest/source/include/linux/sched.h - sched.h - include/linux/sched.h - Linux source code
(v5.19.5) - Bootlin
stackoverflow.com/questions/22101574/how-to-figure-out-if-process-is-really-running-or-waiting-to-run-on-
linux - how to figure out if process is really running or waiting to run on Linux? - Stack Overflow
eklitzke.org/uninterruptible-sleep - Uninterruptible Sleep
elixir.bootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE - TASK_UNINTERRUPTIBLE identifier - Linux
source code (v5.19.5) - Bootlin
opensource.com/article/19/2/fair-scheduling-linux - CFS: Completely fair process scheduling in Linux

288

Sources
docs.kernel.org/scheduler/sched-design-CFS.html - CFS Scheduler — The Linux Kernel documentation
0xax.gitbooks.io/linux-insides/content/Interrupts/linux-interrupts-9.html - Softirq, Tasklets and Workqueues ·
Linux Inside
sites.google.com/site/masumzh/articles/x86-architecture-basics/interrupts-faults-and-traps - Masum Z Hasan,
PhD - X86 Architecture basics: Interrupts, Faults and Traps and IO
wiki.osdev.org/Interrupts - Interrupts - OSDev Wiki
en.wikibooks.org/wiki/X86_Assembly/Programmable_Interrupt_Controller - x86 Assembly/Programmable
Interrupt Controller - Wikibooks, open books for an open world
intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vo
l-3a-part-1-manual.pdf - 64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
man7.org/linux/man-pages/man2/madvise.2.html - madvise(2) - Linux manual page
kernel.org/doc/html/latest/admin-guide/mm/transhuge.html - Transparent Hugepage Support — The Linux
Kernel documentation
docs.kernel.org/admin-guide/mm/index.html - Memory Management — The Linux Kernel documentation
kernel.org/doc/html/latest/filesystems/vfs.html - Overview of the Linux Virtual File System — The Linux Kernel
documentation

289

Sources
books.gigatux.nl/mirror/kerneldevelopment/0672327201/ch12lev1sec7.html - The Dentry Object
developer.ibm.com/tutorials/l-completely-fair-scheduler/ - Inside the Linux 2.6 Completely Fair
Scheduler

290

