ANSY_ S

Getting in Linux et
Kernel details e

version 2022-12-20 B T

1]
1
—- Cyril zarak Duval, root CRI/ACU 2020 lll==
N

Introduction

Generic information about the course O EEEEEEEEEE
[| HEEEEEN

Why should you listen to the course ? Lmmas

Linux is a state of the art in the industry -
Understanding in details will help you as low-level
engineers

Provide some tools useful to work with Linux

Help you acquire an analytic mind to tackle low-level
Issues AEEE
Subject somewhat difficult ¥ EEEE
Getting a decent grade ¥ EEEE

N2 22 2 28
o
0

N2 2 2 2 7 20 7 2 2

Notions

ptrace

strace & rr

ebpf

auditd
kprobes/uprobes/tracepoint
perf

pseudo filesystems

VFS

iptables/nftables

initramfs

N2 2 2 2 2 2\

PXE

dracut

BCC

CPU & scheduler metrics
Memory management & metrics
Systemd

Understana - .
observability CLieisEas

Observability applied to Linux o SR
H ERENEN

Observability

e 2
e 2

-

v

Observability is a high-level notion

Observability means understanding what is going on in a
system

Observability in its modern approach has 3 pillars:
€ Metrics

® logs

€ Tracing

Linux is the core of all our foundations

We need to have observability in it

€ To better understand, to administrate it

€ Todebug

Observability in Linux

=> Linux thankfully offers interfaces for observability

=> What are the first things that come to your mind when you
think about observability and Linux ?
€ \What are the things you want to observe ?
€ \What are the interface(s) you will use ?

Get information about =

CPU usage

Let's start with something “simple” = s
H EREEEN

CPU and linux

=> What does CPU usage means ?
€ 0,50, 100%?
€ 3800%?
-> |t a percentage of time spent working on stuff, otherwise
idling
=> How do we get this number ?
€ top, htop
€ mpstat

CPU and Linux

-> How does they get the information ?
=> Let's pause this question and investigation, and focus on the
methodology here

10

¢ | have a tool behaving in a way
that is unknown to me.

How do | figure out how it . " EENEEEER, -
WOorks? LD TR TR

12

How does it works ?

-

e 2
e 2

mpstat returns CPU usage, along with some useful
information

Does it create this information ?

Does it collect this information from somewhere ?

€ Isitonthe network ?
€ Isitonthe machine?

e Qur filesystem ?
e Any other mean?

How do we get this info ?

=> 2 hypothesis:
€ The CPU usage information is returned by the hardware
directly
€ The CPU usage is computed by the kernel and reported
=> How can we figure this out ?
€ Knowing that mpstat knows the answer
=> The most straightforward solution would be to read mpstat
source code
€ But before actually doing this, let's play a small game

How do we contact .
‘he kernel 7

\What are the interfaces offered ? M EEEEEEEEEE
[| EEEEEN

Kernel interfaces sne

=> The "only” interface is a syscall uE EEEE
€ All other high-level interfaces are syscall-based

=> Asyscall can gives us information directly:

gethostname(2)

gettimeofday(2)

getcpu(2)

getcwd(2) SRR

A A 2 X 4

15

16

Kernel interfaces

=> Some syscalls are used to reach higher level interfaces
€ open(2), openat(2), read(2), write(2), close(2)

-> What are higher level kernel interfaces ?

/proc/....

/sys/...

/dev/...

/sys/kernel/debug/...

/sys/kernel/security/...

/sys/firmware/efi/efivars/...

/sys/fs/cgroup/...

0060000

Kernel interfaces

=> Are other syscalls used for higher level interfaces ?

- Yes:
€ socket(2)
¢ ioctl(2)
¢ bpf(2)
& perf_event_open(2)
€ ptrace(2)

17

18

Kernel interfaces sne

-

e 2
e 2

v

Let's get back the special directories mentioned before uE EEEE

(/sys, /proc, ...)

How are they special ?

They aren't “real files” on your SSD

€ Infact you can open your SSD on another machine and
check that by yourself in a very easy and naive way

The files there are kernel interfaces in the forms of a file CEEE

€ 'In UNIX, everything is a file" -~ EEEE

Those are pseudo-filesystems » EEEE

But more about that later ... EEEE

Back to our CPU .

Usage analysis

S0, what about mpstat 7 O EEEEEEEEEE
T

20

mpstat

N2 20N T/

mpstats like almost everything on a classic linux distro is
open-source
Checking source code is therefore a good reflex for things
like this
Let's read mpstats source code
Code is well written
€ Follow many standards
Proper naming convention

€ (Comments
¢ ..

https://github.com/sysstat/sysstat/blob/master/mpstat.c

2l

mpstat

N 2 7

Code is quite short but finding the information still took time
Can we make this more efficient ?
What could be another approach than reading source code ?

What do we know or deduced 7

The information is probably held by the kernel
mpstat gets this information

Communication between userland and kernel land is
done via syscalls

Could we just look at the syscalls mpstats did ?

¢ o600

22

Lelt's ptrace mpstat

N 2B 2 2/

Linux offers a syscall and its interface to debug softwares
ptrace(2)
€ But more about it later ...
Used to debug, like GDB, to see what is going on, inspect
code, variable values, etc
What if we have a special debugger ?
€ This debugger will just run the program
€ But whenever a function is called, it checks if it a syscall
function ?
e But wait, are syscall functions ?

Some syscall digression . - ° I.isscsas

How is implemented a syscall in the end ? o A EEEEEEEE
H ERENEN

What are syscalls ?

-> We know that a syscall is a kernel function that is called
from userland

€ Sortof
-> But are we allowed to call directly a function like this ?

= Inx86 (IA_32 and x86-64) we run code on the CPU in rings

€ ring Ois the most privileged one

e Allowed to access hardware and configure the CPU

directly

€ ring 3is the one userland runs in. Can do computation,

but cannot run some privileged CPU instructions

CPU rings

Least privileged

Most privileged

Device drivers

Device drivers

Applications
25

What are syscalls ? Ea8

Vil

v

26

The kernel runs in ring O N EEEE
The kernel can therefore do things regular process can't
Regular process still need to access some protected devices
or perform some privileged operations

€ Ina controlled environment (permissions,)

They contact the kernel for those operations via syscalls
The kernel checks permissions, do sanity checks, etc and 11
performs the operation — EEEE
The result, if any, is returned to the user » EEEE

27

What are syscalls ?

N2 2 2

Syscalls are the interface between userland and the kernel
Allows privileged operation, control kernel behavior or use
kernel features

Allow abstraction (disk drivers, network drivers,)

How can we call a ring O function from ring 3 7

€ Do we have symbols exported ?

In x86 we have 3 ways:

€ INT 0x80 (legacy)

€ sysenter (IA_32)

¢ syscall (AMDG64)

Syscall implementation in x86

-

28

INT 0x80 is hardly used anymore, it is a legacy way of
making a syscall
€ C(reates an interrupt to notify the kernel

e But more about that later ...
sysenter is also called fast system call, created by intel for
IA_32
syscall is the AMDG64 version, mostly used now

29

Syscall implementation in x86 Ea2

N 2 7

\Z

When doing a syscall instruction, what happens exactly ? N EEEE

On syscall, the CPU looks in a specific MSR: IA32_LSTAR

IA32_LSTAR MSR contains a ring O function address to

execute

In Linux, it's entry_SYSCALL_64

€ https:/elixirbootlin.com/linux/latest/source/arch/x86/entr
y/entry 64.5#(49 S EEmE

Linux determines which syscall has been called in this s EEEE

function based on %rax ¥ EEEE

The arguments to the syscall are in %rdi, %rsi, ... as usual EEEE

https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L49
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L49

30

Syscall implementation in x86

-

In entry_SYSCALL_64 we prepare everything to call the actual

kernel function

€ \We save userland general purpose registers on the
stack and do a few things

We call the kernel function associated with the syscall

requested, forwarding the arguments userland gave

Once the kernel function returns, we put the return value on

the stack

We do a few things back, put the value from the stack back

in registers and return

3

Syscall consequences

-

N0 2N

Calling a syscall means calling a kernel function through
some steps

The steps are to ensure security when switching from ring 3
code to ring O (and vice-versa)

These steps are called privilege switch

Privilege switch is quite expensive:

More instructions to execute

No CPU pipelining/branch prediction/...

Data shouldn’t be accessed directly and shall always go
through copy_from_user/copy_to_user

Pointers must be handled carefully

¢ o600

About vDSO

Some more information about syscall
implementation

33

Virtual Dynamic Shared Object

N2 2NN 2

Some syscalls are used a lot

They don't have any security and will behave the same for
every user (privileged or not)

To allow better performances, the kernel exposes some
syscall directly in userland

Userland implementation is done in vDSO

Shared ELF object to every userland process

€ Address fetcheable via auxiliary values

€ Glibc getsit for you

Virtual Dynamic Shared Object

-> (ontains some syscall, depending on the architecture
- gettimeofday(2), getcpu(2), ...
=> No privilege switch = faster

€ No strace, no seccomp however

XX

| $ file vdso64.so0

2 vdso64.s50:

DYNAMIC SYMBOL TABLE:

ELF

-bit LSB shared object, x86-64, version

(SYSV), dynamically linked,

BuildID[shall=1e5d0cl2baecaaebccOca26b4cd4cddd0be8f0e5d4, stripped
3 $ objdump -T vdso64.so

vdso64.s0:

w DF

. g DF

0 0000000000000bb® w DF
11 0000000000000bb0 g DF
. w DF

: g DF

4 0000000000000c50 g DF

w DF

g DF

3 0000000000000c20 ¢
0 0000000000000c20 w

.text
.text
.text
.text
.text
.text
.text
.text
.text

g DO *ABS*

DF
DF

.text
.text

file format elf64-x86-64

00000000000001b0

00000000000001b0
000000000000002¢
00000000000000al
000000000000002e

000000000000002a
000000000000002a

LINUX_2.
LINUX_2.
LINUX_2.
LINUX_2.
LINUX_2.
LINUX 2.
LINUX_ 2.
LINUX_2.
LINUX_2.
LINUX_2.
LINUX_2.
LINUX_2.

(o)) I e) i e) iie) Jie) Ie) B e) o) B o) o) M)}

clock_gettime
__vdso_gettimeofday
clock_getres
__vdso_clock_getres
gettimeofday
__vdso_time
__vdso_sgx_enter_enclave
time
__vdso_clock_gettime
LINUX_2.6
__vdso_getcpu

getcpu

_el’s get back to .
mpstats system calls Tl EeaEs

Now we do know what a system call is = SN
H EREEEN

37

Lelt's ptrace mpstat

N 2 7

Linux offers a syscall and its interface to debug softwares

ptrace(2)

Used to debug, like GDB, to see what is going on, inspect

code, variable values, etc

What if we have a special debugger ?

€ This debugger will just run the program

€ But whenever a function is called, it checks if it a syscall
function

€ If so, prints arguments, resume execution and print
return value

UJiscovering strace SH

-> A famous debugging tool for such purposes exists uE EEEE
> strace(1)
=> Inthe simplest usage:
€ Starts a process with given arguments
€ Gets notified of all the syscalls the tracee performs
€ Prints the syscall, its arguments and return value

Usefulness of strace

=> Whenis strace useful ?
€ Find out why a software fails
€ Find out how it behaves if no documentation
e Ex:location of config files read by the app
e EXx: Interaction with other processes
e Ex: Memory impact and behaviour
€ See where a software hangs (if on a syscall)
* ..
=> straceis a very popular and versatile debug tool
€ Simpler and quicker to use than GDB
e Not suited for all workflows though

How to strace / saes

= How to use strace(1) efficiently ?
-> Afew tips:

¢ S0

40

Use -f to follow and strace forks too

Use -z or -Z to see only successful or failed syscalls
-c will give you a summary/overview of the syscalls
used. Can be useful at first to have a sneak peak L
Discover the -e option NEEEE

b | ot's discover strace -e and play H
with strace a bit "s EEsEmEEE &

Strace can be difficult

=> Since strace will show every syscalls, it might be difficult to
find what you're looking for
=> Especially if the software is huge
€ Or we have limited knowledge on what to look for
=> Example: pylint
€ \Where's the configuration file ?
€ Tracing open(2)/openat(2) ?

o000

$ strace -c pylint ipxe_manager 2>&1

5% time seconds usecs/call calls errors syscall
.49 .006295 newfstatat
.04 .001666 read
.13 .001540 munmap
B3l .001288 openat
.94 .000683 brk
.91 .000541 close
.66 .000506 lseek
. 251 .000347 mmap
115 .29 .000317 write
.19 .000303 ioctl
.65 .000228 getdents64
.30 .000041 mprotect
.26 .000036 rt_sigaction
40 .12 .000017 readlink
2 .09 .000012 getcwd
22 .05 .000007 getrandom
23 .03 .000004 sysinfo
.02 .000003 futex
.02 .000003 prlimit64
.01 .000002 dup
.00 .000000 pread64
.00 .000000 access
.00 .000000 execve
3C .00 .000000 fentl
3] .00 .000000 mkdir
32 .00 .000000 arch_prctl
.00 .000000 gettid
.00 .000000 set_tid_address
.00 .000000 set_robust_list
.00 .000000 epoll_createl
.00 .000000 rseq

.00 .013839 total

44

Strace can be difficult

-

UL

LA 2 JER & 4

xample: pylint

Where's the configuration file 7
Tracing open(2)/openat(2) ?
e 991 openat(2) in this example
Maybe grepping “cfg", “yml” or “json” ?
Actually file name is pylintrc
And not even open/openat(2) if doesn't exist !

00

1$ strace pylint ipxe_manager 2>&1 | grep pylintrc

2 newfstatat(AT_FDCWD,
3 newfstatat(AT_FDCWD,
4 newfstatat(AT_FDCWD,
5 newfstatat(AT_FDCWD,
directory)
6 newfstatat(AT_FDCWD,
7 newfstatat(AT_FDCWD,
3 newfstatat(AT_FDCWD,
9 newfstatat(AT_FDCWD,
10 newfstatat(AT_FDCWD,
directory)
|1 newfstatat(AT_FDCWD,

o
"pylintrc", Ox7ffcd8fc3bl®, 0) = -1 ENOENT (No such file or directory)

“.pylintrc", Ox7ffcd8fc3bl®, 0) = -1 ENOENT (No such file or directory)
"/home/zarak/.pylintrc", Ox7ffcd8fc3bl®, 0) = -1 ENOENT (No such file or directory)
“"/home/zarak/.config/pylintrc", Ox7ffcd8fc3bl0®, 0) = -1 ENOENT (No such file or

"Jetc/pylintrc", Ox7ffcd8fc3cd®, 0) = -1 ENOENT (No such file or directory)
"pylintrc", Ox7ffcd8fc6c70, 0) = -1 ENOENT (No such file or directory)

"“.pylintrc", Ox7ffcd8fc6c70, 0) = -1 ENOENT (No such file or directory)
"/home/zarak/.pylintrc", Ox7ffcd8fc6c70, 0) = -1 ENOENT (No such file or directory)
"/home/zarak/.config/pylintrc"”, 0x7ffcd8fc6c70, 0) = -1 ENOENT (No such file or

"/etc/pylintrc", Ox7ffcd8fc6e30, 0) = -1 ENOENT (No such file or directory)

Strace can be difficult

-

Useful sometimes to simulate a failure or to simulate a
success of a syscall or a set of syscalls
Need to have some knowledge of the software

€ Orsome intuition

CPU metrics

What is a CPU with linux ? . EEEEEEEEEE
[| HEEEEEN

48

Understanding CPU metrics

-
-

Vil

A CPU core or thread shall already be known to you

We've seen already 2 kinds of things a CPU can execute in
this course:

€ User code

€ Kernel code

What are the other things a CPU can do ?

Fortunately a CPU isn't always doing something: it can idle
Let's check the metrics exported by the kernel in /proc/stat

49

N2 20 2 2 2 R R R

Understanding CPU metrics ceaid
User = EEE
Nice Y SmEm
System n EEm
dle % cEEEm
owai " Ioaas
@ sames
Softirg geeEEEEE
Steal - amas
Guest Y sEEEEE
Guest_nice © R EEE

S0

Understanding CPU metrics Ea8

N2 20 2 2 2 R R R

Y EEER
User -> userland code

Nice

System -> kernel-land code

ldle -> CPU literally doing nothing (~no power usage, C-state)
lowait

Irq _ AEEE
Softirg NEEEE

Steal EEE
GUESt [| pNEEE

L1

' N ENEEE
Guest_nice 5 EEE
SEn

HEER

Sl

Understanding CPU metrics Ea8

N2 20 2 2 2 R R R

Y EEER
User -> userland code

Nice

System -> kernel-land code

ldle -> CPU literally doing nothing (~no power usage, C-state)
lowait

Irq | EEEE
Softirg SEEEE

Steal EEE
Guest -> kernel KVM gave CPU time to VM -
Guest_nice -> kernel KVM gave nice CPU time to VM © R EEE
ol 1
HEER

Process niceness and =
scheduler

Why isn't pulseaudio nice ? N S
T

53

CPU and multithreading e

N2 2 2

N EEEE
A classic PC/server runs dozens if not hundreds of

processes in “parallel”

A modern CPU has multiple cores, and multiples threads or
logical cores/hyper-thread

Let’s say our CPU has 16 logical cores

| can truly execute 16 processes in parallel EEEE
How can | give the impression it's running 150 ? mEEEE

o4

CPU and multithreading

-

Most processes don't need the CPU 100% of the time

They need some time to work, and have to wait

€ Timer, userinput, 10, being activated back, ...

If most of them don't need to actually run in parallel, we can
split execution in small timeshares, and simulate parallel
execution

This is the role of the scheduler to provide such timeshares
and execute processes

CPU and multithreading

=> Hereis the classical representation of a Process state in

Linux
Process State

Jexit

I/0 17O
or or

event completion event wait

55

Process states
Giving meaning to R/S/D/Z/T O SN

CPU and multithreading e

AN EEEE
=> Actually it looks more like this

SIGSTOP
(‘ctrl + 2')

SIGCONT

Process state

=> R state means running or runnable
€ Either currently being executed on a CPU core (running)
€ Or waiting for a core to be free and for the scheduler to

start it (runnable)

=> Sstateis the state some process will spend the most time
in
€ \Waiting for an event, for I/0, for a timer, ..

-> T state is fairly easy to grasp, one stopped the process by
sending a SIGSTOP signal

59

Process state

=> D stateis a bit more shady

L 4

4
4

Some linux syscall are not interruptible. It means that a
process waiting for the syscall to complete cannot be
killed.

No signal can be transmitted, even SIGKILL

Examples include some I/0 syscalls, KVM related calls,

etc
e https:/elixirbootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE

Famous example often found is a NFS-related process 0
stuck in D-state when NFS server is unreachable

https://elixir.bootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE

60

Process state

-=> /stateis for a zombie

L 4

4
4
4

Zombie process is a process that has finished its
execution but hasn't been wait(2)-ed by its parent

Its information remains and must be collected for the
process to be removed from the process list

Init process must wait for zombie process re-attached
to it to maintain a clean system

When a zombie is create, SIGCHLD is sent to parent
process

What does it have to

do with niceness ?
Exploring CFS

62

CFS - Completely Fair Scheduler .

-

Vil

The role of the process scheduler is to run process when it
makes sense

€ \When they are ready to run

€ \When they can (i.e. a CPU core is available)

Linux default scheduler is called CFS

It divides time in timeslices

It gives a timeslice to the process that is ready to be run and
has been starving CPU time the most first

63

CFS - Completely Fair Scheduler

-

-
-

If the system is not overloaded, CFS doesn't have to make

important decisions

€ Most process are in D/S state, and therefore very few in
R state. Decisions are easy

But if the system starts to be overloaded, CFS comes to play

CFS selects the process that is missing the most vruntime,

..e. the process that should have been running but hasn't

€ Takes decision based on total execution time and how
long it has been waiting

CFS - Completely Fair Scheduler B

=> (FS tracks process via a red/black tree EEE

€ On the left of the tree, process with the smallest vruntime
-> |tis also able to dynamically change the length of the CPU
timeslice based on the load:
€ Ifaprocessisalone, it makes sense to give it a lengthy
timeslice since it won't impact anyone
€ If 2 process requires each 50% of a single CPU core, to make
them look like they run in parallel we need to alternate their - EEEs
execution - EEEE
e But mind context switch ! Intervenes lll===
sched_min_granularity_ns W EEm
11

64

struct task_struct {
volatile long state;
void *stack;
unsigned int flags;
int prio, static_prio normal_prio;
const struct sched_class *sched_class;
struct sched_entity se;

Nodes represent }
sched_entity(s)
":,?:ﬁ:fmb,{tmr struct sched_entity {
struct load_weight load;
struct rb_node run_node;
struct ofs_rq { struct list_head group_node;
struct rb_root tasks_timeline; };
};

Y N [NE [N

virtual runtime

struct rb_node {
unsigned long rb_parent_color;
struct rb_node *rb_right;

~ Most need of CPU Least need of CPU } struct rb_node *rb_left;
N En
65 H'HEEN
EEEEEE

66

CFS - Completely Fair Scheduler .

-
-

Vi J

But CFS is more complex than that
Some process needs higher priority in their scheduling,

because scheduling latency impacts
€ e audio
e audio doesn't need a lot of CPU time
e Butaudio suffers heavily from latency
This is the niceness of a process with linux
The nicer the process, the less priority it gets
\Very nice process can still take 100% of a CPU core. They will
just be descheduled if anyone else is asking for some CPU time

67

CFS - Completely Fair Scheduler B

N2 20 2 7

AN EEEE
CFS also takes into account various other configuration

Internally, it also has a concept of priority

Priority is changed by niceness, but to a range only

To access the other priority values, a process must change
its scheduling class

More info on sched(7)

CPU load

A metric often misunderstood

69

CPU load e

2

CPU load can be understood as "how many operations my =1

CPU is currently doing”

This is a wrong understanding when it comes about the load
metric reported by linux

A better understanding would be "How much pressure is
being applied to the CPU in average for a period of time” L
What does it measure exactly ? NEEEE

70

CPU load

=> Linux load represents the number of processes running, or
waiting to be ran on the system, in average for a period of

time

€ ltalsoincludes processes in uninterruptible sleep
e |/O matters

€ |tisnotlimited to a core -> all load values don't have
the same meaning on each machine

€ Usually troubles begins when the load reaches the

number of CPU cores

CPU load

=> 3 values exported in /proc/loadavg
€ 1 min, 5minand 15min load
€ Number of processes in R state / schedulable entities
€ PID of the latest created process

$ cat /proc/loadavg EEEN
.34 1.68 1.63 3/3253 mEEE

72

CPU load eaes

AN EEEE
Having 3 loads metrics, and them being averages has

Impact

There is delay between event and possible visualization on
the curves

load1 is closer to “instant” load while load15 is really
difficult to pull in any direction

CPU load

Load over time

Start of event

N

End of event

_et'sgetbacktoour -
CPU metrics

We do know now who's nice and who = A EEEEEEEEEE
. , B FEEEEEE
isn't T

75

Understanding CPU metrics Ea8

N2 20 2 2 2 R R R

Y EEER
User -> userland code

Nice -> process with high niceness

System -> kernel-land code

ldle -> CPU literally doing nothing (~no power usage, C-state)
lowait

Irq | EEEE
Softirg SEEEE

Steal EEE
Guest -> kernel KVM gave CPU time to VM -
Guest_nice -> kernel KVM gave nice CPU time to VM © R EEE
ol 1
HEER

76

Understanding CPU metrics Ea8

N2 20 2 2 2 R R R

Y EEER
User -> userland code

Nice -> process with high niceness

System -> kernel-land code

ldle -> CPU literally doing nothing (~no power usage, C-state)
lowait

Irq _ AEEE
Softirg NEEEE

Steal -> As a VM, hypervisor didn't schedule us 1
Guest -> kernel KVM gave CPU time to VM S i EEEm
Guest_nice -> kernel KVM gave nice CPU time to VM S EREEEE
oy 1
HEER

77

Understanding CPU metrics

N2 20 2 2 2 R R R

User -> userland code

Nice -> process with high niceness

System -> kernel-land code

ldle -> CPU literally doing nothing (~no power usage, C-state)
lowait -> time spent for a process waiting for 1/0 (unreliable)
Irg

Softirg

Steal -> As a VM, hypervisor didn't schedule us

Guest -> kernel KVM gave CPU time to VM

Guest_nice -> kernel KVM gave nice CPU time to VM

Quick tour of IRQ and =
softIR() - Semceas

Bringing some memory back o EEEEEEEEEE
| ENEEEN

79

CPU interrupts

2

The way for the hardware to notify the CPU something is
happening is through IRQ

For example, the user moved its mouse or typed on its
keyboard

Paquets reached the machine and are waiting on the
network card

Without getting into too many details, the CPU gets notified
of these events through the PIC (Programmable Interrupt
Controller)

CPU interrupts (x86)

=> Aninterrupt stops the current CPU execution and executes
an interrupt handler read on the IDT
€ The IDT (Interrupt Descriptor Table) maps interrupts to
handlers
= Aninterrupt can be triggered by external device (like the
network card) or by the CPU itself
€ Inthis caseit's called a software interruption
e Oran Exception (x86)
€ Examplesinclude a division by O, or an INT instruction

CPU interrupts (x86)

- Exceptions (or software interrupts) are of 3 categories:
Traps, Fault and Abort
€ Atrapis reported after the execution (ex: INT) and allow
process continuity
A Fault is reported before the actual execution to allow
to fix it (ex: div / 0)
An Abort is when everything is on fire. Run.
More about it in the x86 Intel manual

*eo o

CPU interrupts (x86)

K7

82

In linux, it's translated as interrupts/IRQ (Interruption

ReQuest) and softIRQ (software IRQ)

Values are exposed in /proc/interrupts

softIRQ in linux don't show all x86 exceptions

€ softlRQ displayed by Linux are limited, check
/proc/interrupts

€ softlRQis a “primitive” system that has been partially
taken over by tasklets

There is no direct mapping between linux exposed values

and x86 events

CPU metrics in the .
end - SeEcEER

Putting everything together = EEEE NN
H ERENEN

84

Understanding CPU metrics

N2 20 2 2 2 R R R

User -> userland code

Nice -> process with high niceness

System -> kernel-land code

ldle -> CPU literally doing nothing (~no power usage, C-state)
lowait -> time spent for a process waiting for 1/0 (unreliable)
Irg -> hardware interrupts

Softirg -> software interrupts

Steal -> As a VM, hypervisor didn't schedule us

Guest -> kernel KVM gave CPU time to VM

Guest_nice -> kernel KVM gave nice CPU time to VM

Understanding CPU metrics

htop CPU bars have colors representing the different kind of
CPU metrics

=> By default:

blue = nice

green = user
red = kernel (+ iowait + irq + softirq) 0
orange = guest (+ steal)

A A 4
|
T
[1 | ||

85

S| - how to .
represent pressure T DoEmcs

Getting a higher level metric to abstract = EEEEEEEEE
| ENEEEN

Monitor system going wrong

-

Let's say you want to monitor your system and try to detect
problematic states
What is a problematic state 7

€ Let's define this in this context by “a state when your

workload doesn't run properly or in a degraded state,
not exploiting your machine full capacity”
In this case, is a 100% CPU usage defined as a problematic
state 7

88

Understanding when a state is
problematic

-

Vil

CPU is a complex metric to grasp when trying to investigate
problematic situations
€ Quite some metrics
€ CEasy to get fooled

e "OMG my CPU is spending all its resources on idle !
CPU used at 100% doesn't mean your application is disturbed
In some cases, it can be impacted without reaching 100%
Try to put your metrics in correlation with your application

Understanding when a state is
problematic

=> 100% CPU usage when compiling the kernel
€ Usually not a problem
e [ndicates reaching your max capacity. You might
want to upgrade your CPU maybe ?
€ C(anbeif done alongside other workload
€ Niceness to keep in mind
=> |t's better to rely on what you observe
€ Latency, mouse lag, etc
€ How to program this ?

90

Monitor system going wrong

—> Loadis an indicator indeed but;
€ Relative value (humber of cores)
No indication of actual waiting time the process had to
wait

up the roof
Average over time

4
€ R+D state, so few faulty NFS process and the load goes
4

Monitor system going wrong

Vi b

\7

Linux proposes another metric: Pressure Stall Information
From ~2018 by Facebook

3 metrics: io, memory and CPU

Represent the % of time wasted because of processes
conflicts for a resource

€ You can have 100% used CPU core and 0% CPU PSI
Has a polling interface

€ Used to loadbalance workload in Facebook

What about memory 7. - " Liescaes

Yet another complex metric = s
H EREEEN

Different kinds of memory g

AN EEEE

=> Memory is a wide term with different kinds:

€ \/olatile, fast memory (RAM) m

€ Non-volatile, slower memory (swap)
=> When trying to understand memory for your system, 2

kinds:

€ Virtual memory

€ Physical memory L "Emmm
=> The kernel in combination with the MMU (Memory -

Management Unit) is responsible for abstracting memoryto ™ _CgEe=

(]]

N ENEEE

userland S EEE
ol 1

HEER

93

94

Physical memory

=> Physical memory is divided in multiple places
€ le 4x16 GiB of RAM in 4 sticks
€ 4 GiB of swap on your NVME disk
=> Physical memory has its own address space
€ Depends on the lanes you're plugging the memory in,
the motherboard, ...
-> Different sources of memory may have different latencies
-

95

Virtual memory

Vil

Userland doesn’t want to deal with this

Userland wants a unigue address space for memory

For security reasons, userland processes must not be able

to access memory from each other

€ Per process address space

Userland wants the kernel to do things for it

€ Maybe he wants to interfere a bit with the decisions
e Advise, flush, ...
e (ontrol memory-related mechanisms (i.e. swap)

96

Virtual memory

=> Memory will be used in multiple cases:
\Variable storage (or generic computation needs)
Process executable binary
Disk cache
Kernel memory
Page tables
=> Memory is used with pages
€ 4 kiBon AMD64

LA 2 2 & 4

€ Possibility to increase with THP (Transparent Huge

Pages)

Process virtual :
ﬂ e m O ry EEE EEEEnE

How do a process have access to o SR
”memor\/” ? N EEEEES

98

Process virtual memory

Vil

K7

Each process has its own address space

For obvious security reasons

Each process address space is virtual

€ 2 process can share the same address in their virtual
memory that leads to completely different “real”
memory

Each process address space is flat: no segmentation

Different sections in their address space however

€ Everything is not identical

99

Process virtual memory

25 20 2

Example include a process’ own executable code in a
memory map, called text
A process global variables in a data section

Each process has a struct mm_struct to describe their virtual

address space

€ Actually threads share the same struct since they have
the same address space

€ https:/elixirbootlin.com/linux/v6.0.7/source/include/|i
nux/mm_types.h#L 486

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L486
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L486

100

Process virtual memory

\7

Vi by

Various interesting implementation details about struct
mm_struct

€ Like mmap & mm_rb fields

Each process can have (and actually have) VMAs

Virtual Memory Area

Implements an area of virtual memory, with its property
struct vm_area_struct
https:/elixir.bootlin.com/linux/v6.0.7/source/include/linux/

mm_types.h#l 397

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L397
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L397

101

Process virtual memory

2 27

A VMA is associated to a mm_struct

It has flags (including R /W / X)

Makes the link to a file (if not anonymous memory)
VMAs can be seen in /proc/<pid>/maps

Each call to mmap creates a VMA

€ Sortof, sometimes if it possible, there are merged

together

Pages and Huge pages .~ f.iesss

Lots of pages and yet not a book released o RSN
| ENEEEN

Virtual memory - pages

103

-> A page of 4 kiB means 256 000 pages for 1 GIB of RAM
€ Memory overhead
€ TLB - Translation Lookaside Buffer
Possibility to have bigger pages to reduce costs
€ 2 MiBinstead of 4 kiB -> 512 times less TLB entries
=> (an be “dangerous”
Pages allocated but not used don't count
You can malloc(1024 * 1024 * 1024); no RAM will be taken
You write 1 bit, the page is actually taken
You will waste more with huge pages

LA 2 & 2

Virtual memory - THP

104

=> THP can be disabled system wide
€ Oronly used when explicitly asked with madvise(2)
= madvise(2) indicates what usage a portion of memory will
be subjected to
€ The kernel will apply optimization for such usage
=> Usage includes:

€ Normal € (un)mergeable (KSM)
€ Random € (no)hugepage

€ Sequential

€ willneed/dontneed

Virtual memory - THP

105

-
-

-
-

People usually don't care nor pay attention to THP

Many applications will malloc(4 * 1024) 512 times instead

of allocating (&4 * 1024 * 512) directly

€ Most never use madvise either

Therefore, THP system would be unused and useless

Linux introduces khugepaged and heuristics

€ \When allocation more than 2 MiB of RAM at once, you
usually allocate a THP without knowing it

€ khugepaged will look for pages to merge ina THP

Let's talk about swap .. TlEecE

Why swap is bad but still good (??) = EEEEEEEEEE
H ERENEN

Swap memory “Eis

=> For most people, memory = RAM 11

€ |t's fast, usually big enough
€ However volatile, so we need to be careful
=> However RAM is pricey
€ |t's quite easy to run out of RAM even with normal (but
relatively heavy) applications/processes EEEE
=> What happens when we run out of RAM ? NEEEE
€ Ifit's the only memory: oom-killer —
€ If not: swap (then oom-killer if we abuse) o Ll aEEE

107

Swap memaory

=> Use a persistent disk as a backing storage for more memory

=> Disk can be of various nature (various costs and speed)

HDD

SSD

NVME

the shitty 1 GiB USB 1.0 key Capgemini or Sopra Steria

gave you in exchange for a C\/ no one will take time to

read

=> Performances will suffer: swap is used as a last resort
option

LA & & 2

108

Swap memory Sees

- When do we swap ? anE

=> Swap is used when memory pressure is high. You will not
use swap before reaching a huge RAM usage first
€ Swapped memory stays in swap if unaccessed even if

the system memory goes down again

=> What are the consequences ? EEEE
€ Swapping out process that takes CPU time and 1/0 NEEEE
€ "Volatile memory” written to non-volatile device (!) HH
€ (very) slow memory access on swapped out memory o Ll aEEE

109

10

Swap memory Sees

-
-

K7

AN EEEE
Where on disk is stored swap ?

2 options:
€ Dedicated partition on a disk
€ Dedicated file on your filesystem

e Must be on a persistent storage (no tmpfs, duh)
Swap device needs a specific partition type (mkswap(8)) uEEE
Can be enabled and disabled on runtime with SEEEE
swapon(2)(8)/swapoff(2)(8) EEE

L1l

Swap memaory

=> Why is swap bad ?

4
4

=> Why swap is needed ?

* o oo

Once you start swapping, performances goes down the
drain (-ish)
?

Swap isn't used if the system isn't stressed

Most OS or applications don't have an efficient way to

react on memory pressure to free-up memory

Reaching the limits often means bad things -
There are traps when reaching high memory usage -

I.=EE
: T
I.==.=
u I.=E=
“Fumn
| 1 T
app T
mSW 5 ..EE=
15 'l'=
[y -V the disk ; - EE=E=
MO ntto O ====
me I be - '.=='=
ha S N 1]
shal te nE
SWap fmemo?éa”dlda the = . 'EEE
0 bes cc i I'-'-
ages the : ISS l....l
What F;\at al’ee will SaZCeSSEd to not m = - =:=E=
= W on ly acc ten ase ory 1
‘tuitivelv y rarel\/ Writ rtant c S mem v from N
In mo re impo ou . ely
T ¢ e oﬂe;”éfwo“VQ?narv'egict sl
4 0 bac file, ble.
top ile- fa vera
on ry fi ()o_ eco
-> mo map IS T
Te i'i'i:smmem?tr(;/gether
T ry d
emao
m
112

Swap memory - VM.SwappIiness

Behavior of what to do when running out of performing
memory is controllable via vm.swappiness

The value range goes from O to 200 (recent kernel)

It is often misunderstood

K7

13

Swap memory - vm.swappiness =

AN EEEE
- What people think (it's wrong):
€ vmswappiness goes from O to 100
€ ltindicates the memory threshold at which the kernel
will start swapping
€ e if vm.swappiness is at 60, if you take 59% of RAM,
- noswap, 61%, it will start swapping (maybe) uEEE
=> Thisis stupid and wrong e L1
€ \Why 60 % ? Why would the kernel voluntarily drop NN
performances to swap ? o Ll aEEE

14

15

Swap memory - VM.SwappIiness

-> What it does:

4

4

It's a balance pressure indicator to put more pressure
on swapping out anon pages and dropping recoverable
file pages

It's from O to 200. 0 means aggressive on file pages,
200 on anon pages
The pressure finally applied is a bit complicated:

e Swappiness is ignored in some cases

e Pressure balance is ignored for some part of the list

to ensure no leftovers
e Swappiness = 0 -> no swap unless big troubles

Swap memory - vm.swappiness =

Y EEER
=> More information on

https:/elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.
CHL 2731

116

https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.c#L2731
https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.c#L2731

Fear the O0OM-killer Tl EeaEs

How linux kills userland processes by 5 SamEsmEEEEE
desi m | EEEEEEE
ESIgn EEE ER

118

00M-killer “aaes

S B 20 2

AN EEEE
When reaching the final limit of available memory

Kernel mechanism triggered on allocation failure

Find the most suited process to Kill

€ Highest oom_score

\WWhat is oom _score ?

Per process score always maintained EEEE

Amount of RAM being taken o 11

oom_score_adj -+

Used to be more complex (user vs root process, HW o Ll aEEE

direct access, ...) S EEE
11

LA & & 2

00M-killer “aaes

AN EEEE
- (Configurable in /proc (like most kernel mechanisms)

€ C(anbe disabled entirely
-=> Killing processes by design “omg wtf”
€ \What do you expect from a system running out of
memory anyway ?
=> Invocation and its actions logged in /dev/kmsg (dmesg(1))

113

Getting rid of the 00OM-killer e

AN EEEE
=> Some people don't like the OOM-killer

€ Butstill reckon the job is useful

=> Namely for a major reason: it intervenes when it's late
€ Oftentoo late

=> 3 projects exists to basically do the same thing, but in
userland: EEEE
€ carlyoom NEEEE
€ |Imkd on Android 1T
€ Systemd-oomd (which uses memory PSI) -

120

Kernel threads

You're not the only one having daemons = SR
H ERENEN

Kernel threads SEas

The kernel does some tasks synchronously: 1

€ Syscalls kernel code is executed when the user calls it
=> But there are also asynchronous tasks to perform:
€ Kswapd for example will swap out memory
e FEven compress it with zcache enabled

€ khugepaged does periodic scans to reduce memory L
fragmentation by merging pages in THP NEEEm
Kernel threads are visible with ps or htop like other 1
processes o Ll aEEE
They don't have an associated mm_struct = ='EEE
HEER

122

124

Memory metrics

-

-

-

The memory metrics we're the most interested in for basic

usage is free memory

€ Infactit'sincorrect. We want to know what memory is
still usable for our process

Free memory = Usable memory

€ C(Caches

€ Buffers

When checking for available memory with free -m for

example, be careful to read "available” and not “free”

125

Memory metrics SH

N2 2% T

AN EEEE
The interface to check global memory usage for the

machine is /proc/meminfo

It lists memory and breaks it in different kind of usage
It's has a lot of fields, some of them are overlapping or
Imprecise

It can be misleading and quite difficult to understand it

Memory metrics /proc/meminfo

=> Example on my 24 GIB laptop

23397872
1394720
15413048
184188
13302188
41176

8512216
10476956
1169736
4611376
7342480
5865580

Example on my 24 GiB laptop
Buffers: kernel buffers, for block I/0 & IPC
Cached: file pages in memory

€ Include tmpfs & shmem

€ Exclude swapcached

=> Swapcached: Memory that was in swap, was
put back in RAM but kept in swap

RN

22. 3139
1.35636
14.693
181.115
12.6481

41.8359

8.1002
.97824
.10642
.40702
89577
01122

Memory metrics /proc/meminfo

SwapTotal

MemTotal

SwapTotal - SwapFree =
"SwapUsed™

SwapFree

MemFree

MemTotal - MemFree = "MemUsed”

AnonPages Cached

SwapCached

MemAvailable

MemTotal - MemAvailable = "MemUnReclaimable®

Buffers = AnonPages

KReclaimable |Mapped Cached Unevictable
Sreclaimable PageCache SHMEM MLocked | RAMFS
Meminactive(file) MemaActive(file) ITMPFS| SHM_LOCK
Dirty | Writeback
MemTotal - MemFree = "MemUsed”
Meminactive MemActive
Meminactive(anon) Meminactive(file) MemActive(anon) MemaActive(file)

129

Memory metrics

=> Mem prefixed metrics don't include swap

=> (ached is a huge metric but also imprecise
€ C(Codein the kernel itself to check if cached < O
€ Quite some subcomponents

€ Despite the name, everything is not “cache” memory

€ CEverything can't be reclaimed

€ (ansend partially to swap, but |= swapcached
=> Unevictable means memory that can't be sent to swap

= Mapped is mmap(2)-ed files
€ Noanonymous mmap for example

Different kinds of .
memory

Complex graph shown above indicates o EEEEEEEEEE
how complex it actually is R T T

131

Jirty memory

-

-

When writing data to a file, by default the data isn't actually

written

€ \Well not directly, not always, and it's difficult to predict
default behavior

Because of performances reasons, when writing to a file,

the data is actually put in a special cache in the kernel

This cache has a special name: dirty memory

Dirty memory is a trick played on the user:

€ \We told them the data is written (write(2) succeeded)

€ It's actually not really on disk

132

Jirty memory i

N2 ZEUZE 2

AN EEEE
Dirty memory is “dangerous”

A hard failure of the system, bug in the kernel, or some
nasty crash, and the data it lost

Dirty memory must be flushed down to the disk

Dirty memory helps for performances, but introduces a risk
In fact, MacOS and windows do this as well EEEE
€ ‘'Don't unplug the USB key without ejecting it" TEEEE
How to control dirty memory 7 1
sync(2) mmEEREEES

133

Dirty memory & writeback

-
-

K7

open(2) flags like O_DIRECT
Check dirty memory size and watch for high or constant
high values
€ In might means that disks are a bottleneck
The cache mechanism for write is called write-back
It works with LRU lists
€ Active and inactive list
e [0 handle one-access cache eviction case
€ KnownasLRU/2

Dirty memory & writeback

Dirty memory (and page cache in general) is implemented
with a struct address_space
=> These structs are kept in a radix tree

' 1
L 2 Meaning that the | 1 romane
struct are ordered in 3 romulus ®
. . 4 rubens
a prefix tree by their s ruber
. 6 rubi
address pointer 7 Tubicon) o

®

rubicundus ,
Jr
® o @

Dirty memory & writeback Ea2

AN EEEE
=> Flushing dirty pages to disk is done asynchronously

€ Unless cacheis full during a cache manipulating
operation
-> A page is flushed when it has stayed in the cache long
enough
€ Or when memory is running low EEEN
€ Or when manually requested with sync(2) SEEEE
=> Behavior is also tunable via knobs in /proc/sys/vm - mmmm
€ There's even a laptop_mode option'! o Ll aEEE
e Sadly mostly useless nowadays S EEE
SEn
HEER

135

Dirty memory & writeback Ea2

AN EEEE
=> Flushing dirty pages to disk is done asynchronously

€ Unless cacheis full during a cache manipulating
operation
-> A page is flushed when it has stayed in the cache long
enough
€ Or when memory is running low EEEN
€ Or when manually requested with sync(2) SEEEE
=> Behavior is also tunable via knobs in /proc/sys/vm - mmmm
€ There's even a laptop_mode option'! o Ll aEEE
e Sadly mostly useless nowadays S EEE
SEn
HEER

136

137

Dirty memory handling gas

N 22 2R

How to have both performances and data integrity —1-

assurance ?

Need to trick with concepts like WAL

€ \Write-ahead Logging

Imagine a database context

You don't want to lose data L

But transactions must be quick SEEEE

€ Asquick as possible mmE

Transactions can be complex. They can impact your whole S L aEEmE

data © O amm
11

138

Dirty memory handling

N 2 20

Likely, the database will be stored on disk on a file

It can be huge, so a modification can introduce changes in
guite some “random” places of the file

Random access to different places of the file is expensive, in
terms of 1/0

Writing the result after each transaction will take a lot of
time

€ potentially

Dirty memory handling

-

-

139

Instead, WAL technique allow to deal with this exact
behavior

The WAL is a log file that will record each transactions, in
the right order

When a client makes a query:

€ Thetransaction is written to the WAL

€ \We make sure the WAL is written to disk

€ \We perform the transaction, and return the value

€ Later, the modified db file might be flushed out to disk

140

Dirty memory handling gas

2 2 AR X

If the database server crashes badly, the WAL is still there =1

All successful transactions might not have been flushed to

disk

The database engine will check its WAL, and assure that

data is correct

If not, it can correct it since it has all the information in the EEEE

\WAL ENEEE

Regularly the WAL is reseted with a checkpoint —1-

Writing to disk the WAL is less expensive since it's S L EEEE

append-only mode © R EEE
11

NUMA nodes _

Architecture comes to play = s
H EREEEN

142

NUMA nodes

On some architecture, not all memory is on the same access
level

=> Especially on "big” servers where it's not uncommon to have
2 CPUS
€ And 2 memory zones

=> Instead of having Unified Memory Access, we now have Non
Unified Memory Access
Reaching memory in node 1 from CPU on node 0 is possible
€ But more expensive

143

NUMA nodes ook

N B 2

Linux iIs NUMA aware HEE

numactl --hardware

cat /proc/cpuinfo ; cpuinfo

The scheduler runs in best-effort by default

If a task has been running in a NUMA node, it will try to keep
it there EEEE
Has some functions and data structure to perform its -
NUMA assignation -
https:/elixir.bootlin.com/linux/latest/source/kernel/sched/ o Ll aEEE

1]

fair.c#l 1439 O =I===
EEE

EEE

https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c#L1439
https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c#L1439

144

NUMA nodes

Vil

But this best-effort mode can actually be not good enough
Especially in some cases where the machine is quite loaded
It might actually sometimes be a good trade to force a task
to run on a NUMA node

€ Reducingits CPU & RAM capacities

Good example: VMs on an hypervisor

NUMA nodes eaes

AN EEEE
-=> Possibility to visualize NUMA memory allocation

—> numastat
€ Has even a per-process information
€ /proc/<pid>/numa_maps

=> Possibility to set a NUMA policy
4 set_mempollgy(Z) mEEE
€ sched_setaffinity(2) also ST T
€ Orviacgroups HHH

145

Sidenote: Pushing
debug tools even .
Further

Carcinization of debugging tools = T
H ERENEN

147

Advanced debug tools Ea8

N2 Z0UZE 2

AN EEEE
strace(1) is considered a debugging tool

€ syscall oriented

gdb(1) remains the “true and only debugger”

® Orisit?

gdb(1) while having tons of functionalities lacks a critical
component mEEE
record & replay EEEEE
Mozilla introduces rr EEE

148

r

K7

Vi b

The rr project is a debugger project built on top of GDB

Not a replacement

€ Allow you to keep using all the GDB features

€ Notasking you to learn everything again

rr works by recording your buggy software first

Like strace(1), it will inspect closely what your program does
Record it

And provide a way to replay it, in the exact same context

149

r

-> Replaying the exact same session is very useful for a few
reasons:

4
4
4

No need to make the user interact the same way
everytime
Ability to catch a misfortune once and work on it

e Race conditions, thread problems, ...

Keep learned info in a debugging session across runs
(pointer values, etc)

b4 | ot's check a quick example

AN EEEEE
HEE B ENEEEEEE
| EEEEEE =
CL L P
HEEEN
| H ENEEE EEN
H H EEEEEN
150 H B HEEEE EER
H B EEEEEEE

151

r

-
-
-

LA & & 2

rr was designed by Mozilla to debug firefox
It's able to debug complex software like firefox
It has some limitations though

Single core machine emulated
x86 CPU

some syscalls not tracked
Can break on kernel update

152

r - how does it work ?

N2 2

rr when started records everything to replay the exact same
session

ptrace(2)

seccomp(2)

Because one of the thing rr tries to catch is race conditions
between threads, it must be able to catch them

rr runs all thread on the same CPU core to be sure to
capture such events

€ Impacts perf on heavily parallelized computation

153

r - how does it work ?

A2 20N T

To be able to run all threads efficiently on the same core and
catch their output, rris preemptive

When a thread enters a syscall, ptrace(2) catches the syscall
and hand is given back to rr

rr also periodically preempts threads with signals

It chooses which thread to run while trying to respect linux
scheduler and its priorities

r - how does it work ?

When a program do a syscall, rr catches it because of
ptrace(2)

=> It chooses to resume the syscall, but catches the return

value

€ Like strace(1)

It stores the syscall interaction in a replayable format

It works for most syscalls, but ptrace(2) itself

A process can only be ptrace-d once

€ And firefox and many other already use ptrace(2) on
themselves

Vil

154

rr - how does it work ? T

rr emulates ptrace(2) syscall to bring compatibility NN

rr has to deal with complex situations

€ loctl

€ Namespaces

L

-> Toreplay arecorded trace, ptrace(2) is also used EEEE

=> rrreplaces all syscalls with breakpoints nEEEm

€ |t moves past the breakpoint, and set the return value - mmmm
as recorded o Ll aEEE

-
-

155

156

r - how does it work ?

-

-

Some syscalls are harder to replay

€ mmap(2) - you need to have the same address

€ execve(2) - you have memory mappings that can
change (ASLR)

rr has to trick or implement complex logic to properly

emulate them

Asynchronous events must also be handled

€ Signals, interrupts

They must be sent at the exact same time

157

r - how does it work ?

N 2 2B 2

rris able to time precisely when async events occurs to
replay them the same way

It relies on x86 specific performance counters

rr must also catch race conditions happening on shared
memory

As they describe, famous cases includes X server,
pulseaudio, GPU related function and vdso

They disable shared memory for X and pulseaudio and
remove direct access for GPU

€ \Worse perfs, but ability to replay the bug

158

r - how does it work ?

N 2 2 2 2

For VDSO, rr live-patches vdso in the tracee address space
to replace VDSO calls to actual syscalls

rr must also be able to catch non-deterministic CPU
Instructions

RDTSC is caught via prctl(2)

RDRAND is rarely used, it's replaced manually in the few
places found, but this is not caught by rr

CPUID returns the core number, so sched _setaffinity(2) is
used to force a core

159

r - how does it work ?

N 2 2 2

For VDSO, rr live-patches vdso in the tracee address space to

replace VDSO calls to actual syscalls

rr must also be able to catch non-deterministic CPU

Instructions

RDTSC is caught via prctl(2)

RDRAND is rarely used, it's replaced manually in the few places

found, but this is not caught by rr

CPUID returns the core number, so sched_setaffinity(2) is used

to force a core

€ These instructions might be handled differently is recent
versions thanks to CPUID faulting

160

r - how does it work ?

N2 2% T

As a practical point of view, the trace created shall remain
guite small

It's compressed (and decompressed) on-the-fly by rr
Shared libraries and binaries are stored via hard links or cow
mechanisms

Because ptrace(2) introduces a context switch (from tracee
to tracer and vice-versa), and because it's used twice per
syscall (before and after), it affects performances drastically
€ Butrrisclever

161

r - how does it work ?

N 2 2B 2

To avoid running to many ptrace(2), rr injects a library in
each tracee

The library overwrite syscalls wrappers

The library performs the syscall, but write information to a
shared buffer, shared with rr

It tries to catch most frequently used syscalls this way

€ But fallbacks to the ptrace(2) + syscall in other cases
... there are many other challenges solved by rr

€ Read there paper explaining most of them

https://arxiv.org/pdf/1705.05937.pdf

r - how does it work ?

The master of engineering put in rr leads to a very practical
tool

The overhead it adds is about 20% on firefox

If firefox takes 10min to perform a task, it will take 12min
max with rr as observed

All these elements make rr also very powerful with fuzzers

N2 2% T

162

Memory .
overcommiting

Let's go beyond limits O T T
H ERENEN

164

Memory overcommiting

-

/proc/meminfo also has some metrics about virtual memory

On linux, you can over-allocate

€ vm.overcommit_memory + vm.overcommit_ratio

An allocation in virtual memory != necessarily bound to

physical memory

€ ltisifit's used, meaning written to

Useful because softwares tend to allocate more than they

actually use

€ That's also a reason why you'll unlikely see a negative
answer from malloc(3)

165

Memory overcommiting

=> 3 overcommitting modes possible:

4
4
4

0 -> heuristic, let the kernel decide (default)
1 ->always allow, never check
2 -> always check

=> In/proc/meminfo:

4
4

Committed _AS is the sum of all committed (allocated
virtual memory for all processes)

CommitLimit is the maximum amount of memory
allocatable

e Makes sense in mode 2 only

166

Memory overcommiting

A2 20N T

Overcommitment lead to memory limit being hit before a
memory allocation syscall fails

Checking return value of malloc(3) won't guarantee the
memory IS yours

You will trigger the OOM-killer in fact

Still check return value ...

memory metrics i

Y EEER
=>» (Other metrics are also available in:

€ /proc/vmstat
€ /proc/swap
€ /proc/buddyinfo
¢ .

=> Also some per-process metrics mEEE
€ /proc/<pid>/maps SEEEE
M - uman

167

Can we pause a
minute and finally .
explain /proc ?

A small dive in pseudofilesystems = T
H ERENEN

What is a filesystem? Ei8

=> Avregular filesystem should be a well known notion -

= Adisk (HDD, SSD, ...) is exposed as a block device on linux
€ Special file, allows “raw” access to the disk
e Not quite, but let's keep this definition
- To be used as one would expect (put directories, files, etc), a
filesystem must be created on the disk EEEE
-> Afilesystem is a data layout specs o 11
€ Adata structure mmE
€ Andits driver -
€ Integrated in linux through abstraction interfaces = ='EEE
HEER

169

170

What is a filesystem? Ei8

=> Different kinds of filesystems with different approaches, pros
and cons

T E X X XA X/

FAT, EXT4, XFS, ZFS, BTRFS, NFS, NTFS, ...

Can be thought for the network (NFS, CEPHFS, GLUSTEREFS, ...)
Can have built-in snapshot mechanisms

Can have a journal

Can support extended attributes -
ls more or less subject to fragmentation - EEEs

What to do with a filesystem? eEs

AN EEEE
=> Once your disk is formatted with a filesystem, it can be used

- With windows, it's directly accessible with a letter (C;, D:, ..)
€ It's simpler for them, but also kind of stupid
€ No unified hierarchy
€ \What about letter conflicts ?

=> Inlinux, you have only one hierarchy: the Virtual FileSystem

Linux VFS

One hierarchy to rule them all

173

Linux VES

S B 20 2

On linux there is no disk drive letter, only “/*, the root

Linux maintain internally the VFS, a unified file hierarchy
You can put a disk filesystem somewhere in the VFS

€ This operation is called mounting

Everything under the mount point will be bound to the
filesystem

€ Read, writes, etc

It's common to have the root of the VFS mounted on a disk
partition

The VFS is what you can see when “exploring files” on linux

Linux VES

The VFS is the concept that allows having multiple physical
storage support under the same hierarchy
-> |t allows an abstraction of the actual operations performed

to the user

Y

write() sys_write()

user-space VFS

Y

filesystem’s
write method

filesystem

£

physical media

Figure 13.2 The flow of data from user-space issuing a write () call, through the
VFS's generic system call, into the filesystem’s specific write method, and finally
174 arriving at the physical media.

Linux VFS “eaas

> The linux VFS is tightly tied to the concept of UNIX filesystem -1
=> |t was indeed built on top of the ext2 filesystem
=> A UNIX filesystem in short is built with 4 concepts:
€ Files
€ Directory entries
€ Inodes EEEN
4

Mount points NEEEE

175

Linux VFS Soeas

-> If you want to access your USB key for example, you need: 11

€ To have a filesystem created on your disk, or on a
partition
e The filesystem needs to be compatible with your OS
€ To mount this filesystem somewhere in your VFS
e |[fit'sjusttoaccess its files, you should put it EEEE
somewhere it doesn't impact your system, like /mnt NEEEE

176

Linux VFS - mount sses

AN EEEE
= To mount a filesystem in the VFS, one can use mount(1)

=> This command (and its underlying syscall) will take a source
device, and add it in the VFS at some path
€ This means that everything that used to be on this path
and below isn't directly accessible anymore
e |tisstill accessible by tricking EEEE
e (Opened files stay open, and modification are SEEEE
propagated 1

177

Linux VFS - mount sses

AN EEEE
=> The source device is usually a block device (a hard drive), but

It can also be something else, like:
€ Anetwork address, when mounting a NFS partition for
example (or glusterfs, cephfs, etc)
€ A special kind of source known as a pseudo-filesystem
=> You can check the supported filesystem in /proc/filesystem
€ Filesystem marked with “nodev” means that they don't SNEEEEEE
need a block device -

178

Pseudo filesystem Tl Eeicaes

Some filesystems are not like the others = T
H ERENEN

180

Pseudo filesystem Ea8

N 20 2B 2

A filesystem is usually meant to store and access files =1

But in Unix philosophy, everything is considered a file, even if
it's not truly is one

For example, you might know the special file /dev/zero or
/dev/null

There is no such infinite file on your disk than you can read EEEE
forever, or write to without it being actually written e L1
This is an interface the kernel exposes you - mmmm

Pseudo filesystem

= When doing a open() syscall, the kernel will do a few things
like checking the path, permissions, etc ...
=> Then it will dispatch the syscall to the driver responsible for
the file
€ [fthefileis on an ext4 partition for example, we need to
run code specific to ext4 data structure (whichis in the
end what a filesystem is)

181

Pseudo filesystem

=> We could come up with a special filesystem driver, that will
execute functions for us depending on the file we read/write
=> For example, a file that will execute this function when read:

def read_dev_zero(length, buff): This is obviously pseudo-code

and not the actual linux

if len(buff) > length:

length = len(buff) implem of /dev/zero
memset(buff, 0, length)
return length

183

Pseudo filesystem Ea8

Vi b

\7

We can go a bit further, and imagine this as a whole interface

For example, /proc

It's a pseudo filesystem mounted in /proc called procfs

procfs exposes information about processes and various

other runtime information

€ meminfo, filesystems supported, etc

When reading a file there, you actually run kernel code that -

generates a response for you 1

There is no disk space taken, only RAM for the responsible o Ll aEEE

kernel code © R oEE
nEn
HEER

Pseudo filesystem - procfs

-=> procfs goal is quite easy to understand, and is mostly
read-only to return kernel runtime values

-> But we can have other filesystems a bit more complex

=> procfs for example which role is to expose current kernel
parameters and settings for many things (memory, network,
etc).
€ They can be read, but also written to, to dynamically

change the kernel behaviour

€ You can for example disable IPv6, drop memory caches,

etc....
184

185

Pseudo filesystem - procfs

=> procfsis more or less the config interface for the kernel, with
the command line
= Regularly used with sysctl(1) binary

Pseudo filesystem - tmpfs i

AN EEEE

=> tmpfsis avery useful pseudofilesystem
=> Everything inside is stored in RAM

€ \ery fast accesses

€ olatile, reboot = data gone

€ Usually mounted at least in /tmp
=> When mounting this pseudofilesystem, size argument used

to give the maximum size SEEEE

[| EEEN
€ Defaults to half the RAM EEE

186

187

2

fEEER

H (11

fEEN

H EEEN

S EmmE

Pseudo filesystem - devfs ceaid
N NEEE

fEEn

AN EEEE

devtmpfs is also a well known pseudo filesystem expected to —H1 1
be mounted on all platforms, on /dev ¥ Smmm
It's a bit special, being a tmpfs, another pseudofilesystem, nm -:EEE
but with special behaviour _ CEEEm
It differ from tmpfs by having automatically linux driver _Semmm
register block devices they create in the filesystem SEEEEE
/dev — or devtmpfs — contains a block and chardevices: L ameE
€ Your disks — and their partition(s) if any HHH
€ Special files like zero, null, urandom, kmsg ... i
€ Your tty(s) U mrEes
‘ N NNEE
Ty EEEEEEE

188

Pseudo filesystem - cgroups

25 20 2

Another pseudofilesystem you might have encountered
already is the cgroups (v1 or v2) fs

Interface to manipulate the control groups

Use extensively by systemd, docker, etc ...

Let's not get into too many details here

The VFS structure “aams

AN EEEE
=> Thelinux VFSis tightly tied to the concept of UNIX filesystem

=> |t was indeed built on top of the ext2 filesystem
=> A UNIX filesystem in short is built with 4 concepts:
€ Files
€ Directory entries
€ Inodes EEEN
€ Mount points SEEEE

190

191

The VFS structure

=> The UNIX filesystem build those 4 representations this way:
& File
e Afileis asetof bytes, and doesn't contain metadata
e Adirectory is a special kind of file that lists its
content
€ |Inode
e Aninode represents the metadata of afile. It has a
unique number in a given filesystem
€ Mount points - or superblock
e (ontains metadata information for the whole fs

The VFS structure “aams

AN EEEE
=> The UNIX filesystem build those 4 representations this way:

€ Dentry
e Directory Entry
e Represents the components of a path

192

The VFS structure “aams

AN EEEE
=> The VFS will be built on those 4 unix concepts

=> Any filesystem not implementing a concept listed above will
have to provide a compatibility layer
€ Thedriver will have to create one of those concept
on-the-fly
€ \With some (usually) negligible overhead -
=> Those are requirements for the VFS SEEEE

193

The VFS structure

K7

194

The VFS is the abstract representation exposed to the user,

more or less indirectly

It needs to be abstract and compatible with any “backend”

Which means its structure must be able to interact with any

actual filesystem implementation

€ For pseudo-filesystems implemented in linuy, it's trivial,
but for external ones, harder

The VFS can be complicated with many mounts, filesystems

mounted in multiple places, etc

The VFS structure - super_block .

195

A2 20N T

The UNIX filesystem concept of a superblock is mapped to a
struct super_block in the VFS
https:/elixir.bootlin.com/linux/latest/source/include/linux/fs

NHL1457

This struct contains information about a mount point

It contains a struct super_operations that will provide

functions to filesystem-specific pointers for the

filesystem-specific operations

€ https:/elixirbootlin.com/linux/latest/source/include/lin
ux/fs.h#l 2222

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L1451
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L1451
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2222
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2222

The VFS structure - super_block il

AN EEEE
=> The super_block is usually a mapping to the filesystem’s

control block of superblock, stored on the disk for regular

filesystems

€ The metadata information for a filesystem

€ How many files, its size, ...

€ Generated on-the-fly for pseudo-filesystems EEEE
=> (ontains also run-time information for the mount-point NEEEE

€ Isfrozen? s dirty ? Mount flags, ... NN

e Frozen = block write operation on afs o Ll aEEE

196

The VFS structure - super_block .

197

-

-

Its operations struct will allow operations of the super_block
itself

€ Sync to the disk, remount, freeze, get statistics, ...

But also on the inodes it handles

€ C(Create, delete, dirty, ...

Having the super_operations allows genericity in the
manipulation of super_block object, but filesystem-specific
implementations of such operations

The VFS structure - inode “aaes

198

-

-

Implemented in the VFS as the struct inode HEE

€ https:/elixir.bootlin.com/linux/latest/source/include/lin
ux/fs.n#1 593

Also contains a struct for an inode’s operation

€ include/linux/fs.h - Bootlin

This struct contains information about an inode (file L
metadata) GEEEE
The inode content is written on the disk but the struct is —
generated when the file is accessed o Ll aEEE

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L593
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L593
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2137

The VFS structure - inode

=> Since an inode is generic for all files, and in UNIX everything is
a file, struct inode contains a union for specific files
€ i _pipe,i_bdev,i_cdev

=> Aninode contains quite some fields that can be omitted in a
driver implementation
€ Forexamplei_atime
Operations includes:
€ create, mkdir, mknod, symlink, permissions, ...

=> Noread, write'!

199

The VFS structure - file

200

N 2 2 2 2

It is important to distinguish a file from the UNIX filesystem
concept to the struct file, aka the VFS file concept

A UNIX file is what people usually understand by a file

€ \Without the metadata

A struct file represents a per-process file interaction

A struct file is what process usually interact with

€ Especially afilef_op

include/linux/fs.h - Bootlin

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L940

The VFS structure - file “aaes

201

N2 20 R

A struct file is created by open(2) uEE

A process can have multiple struct files pointing to the same
UNIX file, the same inode

The struct inode it however unique

Its operations are all the operations you think about when
thinking about file manipulation from a process EEEE
€ read, write, liseek, ioctl, mmap, ... SEEEE

The VFS structure - dentry e

202

N EEEE
The difference between the kernel and users for files are how

there are identified

A user (usually) identifies a file by its path

€ open(2) syscall for example

The kernel by an inode number

€ The pathis used to translate to this inode concept

€ The same file (same inode) can have multiple paths for L pmEs
example -

Afile is a generic term and can have multiple types, including ® _CoERS

being a directory © R EEE

11

The VFS structure - dentry e

AN EEEE
Each component of a path is decomposed in objects called

dentry
- /bin/bashis .. 3 dentry objects
€ /. bin and bash
€ The first 2 are dentry representing a directory, the latest
s a regular file EEEE
A dentry object is a \VFS specific object. There's no direct NEEEE
information about underlying object pointed by it 1
-> struct dentry o Ll aEEE

203

https://elixir.bootlin.com/linux/v5.19.12/source/include/linux/dcache.h#L81

The VFS structure - dentry e

AN EEEE
The role of the dentry object is to ease the user manipulation

of file and directories

=> Those operations are costly

€ String manipulation

€ Need to check if valid

€ C(Checkits subcomponents L

‘ ENEEE

The dentry object is really meant to represent a path 1

A mount point, a directory, a file will have a struct dentry o Ll aEEE

€ \When needed © R oEE
nEn
HEER

K7

204

The VFS structure - dentry e

AN EEEE
The role of the dentry object is to ease the user manipulation

of file and directories

=> Those operations are costly

€ String manipulation

€ Need to check if valid

€ C(Checkits subcomponents L

‘ ENEEE

The dentry object is really meant to represent a path 1

A mount point, a directory, a file will have a struct dentry o Ll aEEE

€ \When needed © R oEE
nEn
HEER

K7

205

The VFS structure - dentry e

=> A dentry can be positive or negative
€ A positive ones means it has an inode associated to it
€ Anegative one is the opposite
= A negative dentry (because the path is wrong for example)
can be kept in cache to resolve queries quicker
=> A dentry can also be considered as used or unused via EEEE
d count SEEEm
€ d_count counts the number of active reference to the mEE
associated inode o Ll aEEE
e Meaning if there are active users of the object - ='EEE
HEER

206

The VFS structure - dcache

All those presented mechanisms lead to an obvious design:
dcache

-=> dcacheis a cache mechanism to store, access and remove
dentry objects to have quicker accesses to files
dcache keeps track of dentry objects, in both active (used)
state, and inactive (unused but valid) and negative state
(invalid)

=> |t provides a hash table to have quick access
€ d_lookup()

207

The VFS structure - dentry e

AN EEEE
=> The struct dentry also contains an operation struct

€ https./elixir.bootlin.com/linux/v6.0.7/source/include/lin
ux/dcache.n#l 127
=> The operations of a dentry includes:
€ revalidate, hash, compare, ...

208

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/dcache.h#L127
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/dcache.h#L127

|1
H |1
fAEEn
e EEEE
unsigned int d_flags ENNEEN
seqcount_spinlock t d_seq | = = = =
S r U C e n ry struct hlist bl node d_hash EEE
struct dentry * d_parent FETER
struct gstr d_name . = = = =
struct inode * d_inode By EEEE
unsigned char d_iname [DNAME_INLINE_LEN] 1]
struct lockref d_lockref B N B = = =
const struct dentry operations * d_op PEER
struct super block * d_sb el 1]
unsigned long d_time o1 | = n = = =
void * d_fsdata TEEER
N EEEEE
struct list_head d_lru | - = = = =
wait_queue head t * d_wait FEEEER
struct list_ head d_child L 11
-) by 1]
struct list head d_subdirs | EEEE
= mmEm
- struct hlist node d_alias m ST T

struct hlist bl node d_in_lookup_hash EEEE

struct rcu_head d_rcu N EN

209

=> All structs
pointed by
struct dentry

210

=> All structs
pointed by
struct dentry
€ \With
"useless”
structs
2 removed

imode- | mode

it domtry
St dnatiy)
St dont

ry *, struet inode %)

=> All structs from
struct dentry in
a 2 elements

range

¢ \With
"useless”
structs

212

=> All structs from
struct dentry in
a 2 elements

range

€ \With
"useless”
structs
removed

213

=> For fun: All
structs from

struct dentry in
a 10 elements |

range

214

215

For fun: All
structs from
struct dentry in
a 50 elements
range

VES observability Tl Eeicaes

How can we observe what is going on 5 SamEsmEEEEE
with the VFS ? s " EEmsEsE

217

Observe the VFS

=> The main interface is /proc/sys/fs
=> We have for example dentry-state
€ Exposes the content of dentry_stat_t
€ https:/elixirbootlin.com/linux/v6.0.7/source/fs/dcache.

cHl 118
=> file-max

€ https:/elixirbootlin.com/linux/v6.0.7/source/include/ua

pi/linux/fs.h#L 97
=> Afew otherinterfaces, but yet limited

https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.c#L118
https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.c#L118
https://elixir.bootlin.com/linux/v6.0.7/source/include/uapi/linux/fs.h#L97
https://elixir.bootlin.com/linux/v6.0.7/source/include/uapi/linux/fs.h#L97

218

Observe the VFS eaes

N 2 2 2 2

The VFS is hardly observable, and actually matters less than EEE

actual filesystem underneath

Syscall to get some information about a filesystem: statfs(2)

€ Actually the recommended glibc wrapper in statvfs(3)

Hardly any other interfaces for filesystems :/

What is to be observed would mostly be I/0 on actual EEEE

physical devices NEEEE

It is frustrating because there are quite some structs, 1

operations going on o Ll aEEE

€ Butnointerfaces ... -
11

eBPH

Let's talk about the elephant in the
room

Linux observability Ea8

AN EEEE
-> Most of this course has been focusing on two things:

€ Understanding linux kernel mechanisms
€ Understanding how to observe them
e And observability in general
=> For the past years, a fancy term appeared and is mentioned
frequently
€ CEverytime one talk about linux and observability in the -
same sentence - mEEm
€ On lots of cool, modern and alpha projects o Ll aEEE

220

eBPH

-
-

eBPF is relatively new feature added to linux “recently”
It is actually an extension of a feature existing in the kernel
for years: BPF

€ Berkeley Packet Filter
e Berkeley being the same as in Berkeley sockets or

BSD

€ Now it's extended BPF

Getting to know BPF EEEs

222

N2 2

eBPF is a newer and more powerful BPF 1

€ Butwhatis BPF already ? =
BPF is an old project that has its roots in BSD

It's from the early 1990

It has been integrated in Linux in the beginning of the 2000's
€ Aroundlinux 2.5

It has since been evolving gradually to become what is know -
known as eBPF -

Getting to know BPF EEEs

BPF until the 2010's had a simple purpose: filter network anE

paquets

It comes with a virtual machine running in kernel land

It executes BPF scripts

€ BPF scripts are small programs with special instructions
€ It's not x86 (or else) instructions directly EEEN
Scripts are limited NEEEE
Used by tcpdump for example 1

K7
EEEEEEEEEEE
EEEEEEEEEEE

K7

223

1$ sudo tcpdump -ni any dst host

.0.0.1 and dst port

) tcpdump: data link type LINUX_SLL2

3 tcpdump: verbose output suppressed, use -v[v]...

for full protocol decode

listening on any, link-type LINUX_SLL2 (Linux cooked v2), snapshot length bytes

5 :42:23.798260 1o In 1IP .0.0.1.46842 > .0.0.1.19999: Flags [S], seq , win , options
[mss ,sackOK,TS val ecr 0O,nop,wscale 7], length

' :42:23.798328 1o 1y 107 .0.0.1.46842 > .0.0.1.19999: Flags [.], ack , win , options
[nop,nop,TS val ecr 1, length

' :42:23.798508 1o In IP .0.0.1.46842 > .0.0.1.19999: Flags [P.], seq 0:79, ack 1, win , options
[nop,nop,TS val ecr 1, length

; :42:23.798651 1o In 1IP .0.0.1.46842 > .0.0.1.19999: Flags [.], ack , win , options
[nop,nop,TS val ecr 1, length

J) 17:42:23.799084 1o In IP .0.0.1.46842 > .0.0.1.19999: Flags [F.], seq -Tel ¢ , win , options
[nop,nop, TS val ecr 1, length

2C
packets captured

packets received by filter
packets dropped by kernel

000

$ sudo tcpdump -ni any dst host
> tcpdump: data link type LINUX_SLL2

3 (000)
001

1dh
jeq
1d
jeq
1db
jeq
jeq
jeq
1dh
jset
ldxb
1dh
jeq
ret
ret

[0]
[36]

[29]

[26]

*([20]&0xf)
[x + 22]

.0.0.1 and dst port

Getting to know BPF

226

N2 ZE 0 2

Executing code dynamically in the kernel in a virtual machine
looks very interesting

One could want to execute more than just packet filtering
Maybe report information about the packets to userland ?
Maybe include some packet manipulation ?

€ CEvendropping them ?

Etc...

As ideas came along, BPF subsystem grew

From BPF to eBPF: internal BPF . “aaes

The virtual machine idea looked seducing EEE

A JIT was introduced to compile BPF instruction to x86
Instructions

€ Soitwas fast

BPF had too many limitations, like the number of registers
available (2), no 64 bits registers, ... uEEE
2 BPFs were created: classic BPF and internal BPF NEEEE
Internal BPF was more powerful, but was hidden from -
userspace i -

-
-

K7

227

From BPF to eBPF: internal BPF . “aaes

The only interface was for classic BPF uEE

Classic BPF was then transformed in internal BPF in the

kernel

€ Faster, using x86 instructions directly, ...

But the idea of exposing an interface for internal BPF to

userland was already there L

The goal was also to work on GCC/LLVM to generate internal SEEEm

BPF directly EEE

=> Internal BPF was also able to call some limited set of kernel ® _EEEEE

functions © R EEE
11

-
-

228

From BPF to eBPF: internal BPF . “aaes

Internal BPF was also starting to draw attention for tracing EEE

Could be useful to use this dynamic language and virtual
machine to run more things dynamically

€ No more real connection with the network

BPF moved from the net/ to kernel/bpf

€ Removed also some ties with network as well

This internal BPF was then renamed as eBPF for extended -
BPF . maEE

-
-

229

eBPF evolution

230

Vi b

What happened after ?

bpf(2) syscall was introduced

Load a BPF program in the kernel

Of course, huge restrictions:

We can't run arbitrary code in the kernel
We can't call any function

We can't have a loop

We can't sleep

LA & & 2

eBPF evolution saas

AN EEEE
= Theintroduction of the bpf(2) syscall also introduce a BPF

verifier:
€ Tries to prevent harmful programs from being loaded
€ Things mentioned on the previous slide
€ Butalso read from unallocated registers, bound checks,
etc
=> Obviously a privileged syscall requiring CAP_SYS_ADMIN s Camee
(until 5.8 when CAP_BPF was added) 1]

23l

eBPF evolution i

- Added feature to eBPF at that time was also maps 1

-> eBPF maps are key/value store to exchange data from kernel
to userland
€ They are created from userland though
e \/iaa call to bpf(2) too
e Butnot directly from a running eBPF program

232

eBPF evolution

233

-> eBPF evolutions since 2014
€ Adding persistent eBPF programs
€ Adding a pseudo filesystem for eBPF (called bpf)
€ Adding different types of eBPF programs
e Few related to network traffic
e One to change socket(2) types
e Few related to monitoring
€ Adding types of maps

eBPF evolution since 2014

Adding support to authz sysctl via eBPF

Ability to dump kernel structures

Allow sleepable eBPF programs

Ability to call some restricted kernel functions
Control scheduler decisions

Allow to loop (with still quite some restrictions)

N0 2N N 2 A

234

Running eBPr

How can one create and run such
magical programs ?

How to run eBPF ?

236

N N 2 A

An eBPF program is setup in the kernel via bpf(2)

It is checked, verified and then installed

It can be referenced via an ID

But a call to bpf(2) doesn't run the program

An ePBF program doesn't run when userland asks for it to

run

An eBPF program is linked to an event, and is started from

this event

€ Like classic BPF, when a socket receives data for
example

The bpf(2) syscall

237

-
-

-

All interactions with (e)bpf goes through the bpf(2) syscall
The design intended to have only a single syscall for all
operations

€ Likeioctl(2)

First argument is the cma:

€ C(reate, read elem, update elem, delete elem for maps
€ LoadaeBPF program

The bpf(2) syscall

238

-

Vil

A map to create must also have a type
¢ BPF_MAP_TYPE_HASH

¢ BPF_MAP_TYPE_ARRAY

€ BPF_MAP_TYPE_STACK_TRACE

*

All rﬁ“ap types don't behave the same way

Read the documentation for specifics
Same goes for eBPF programs

€ Different types for different usages
€ (hanges in the verifier and capacities of your program

4 ok but why the fuss
around eBPF ?

AN EEEEE
HEE B ENEEEEEE
| EEEEEE =
CL L P
HEEEN
| H ENEEE EEN
H H EEEEEN
239 H B HEEEE EER
H B EEEEEEE

eBPF in action

Checkout why eBPF rhymes with
observability

Linux kernel's own javascript i

AN EEEE
=> eBPF is great because it adds dynamicity to the kernel

€ C(ould be seen as the equivalent of javascript, but for the
kernel

There's no intention of putting cats animation in the kernel

though

But instrumentality and observability is another subject mEEE

Let's discover a few eBPF project T

vV

241

eBPF projects SH

N EEEE
—-> Netdata kernel collector

€ C(ollects metrics and allow monitoring on events that
were inaccessible so far

€ Process-related, VFS, hardirgs, softirgs, shmem,
sync-related syscalls, file access, mount,
network-related, TCP-related internal functions calls, ...

242

eBPF projects

243

-

lovisor/bcc
€ Toolkit to manipulate eBPF easily: write eBPF programs

4

in C-like language and compiled with LLVM, front-end for
eBPF programs with python or lua

Comes with pre-defined tools to monitor, trace, snoop a
machine

Linux bcc/BPF Tracing Tools

c* java* node* php* mysqgld_gslower
opensnoop statsnoop Ucalls uflow python* ruby* dbstat dbslower gethostlatency
syncsnoop uobjnew ustat bashreadline memleak
\ uthreads ugc | ssleni e
filetop \ /
filelife fileslower . . + / syscount
vfscount vfsstat Applications killsnoop
cachestat cachetop\ Runtimes execsnoop
dcstat desnoop // exitsnoop
mount snoop System Libraries pidpersec
4 cpudist cpuwalk
trace » runglat runglen
sEgalaY L R System Call Interface I ungslower
funccount ~ / cpuunclaimed
guncilzwer VES * Sockets e deadlock
szzzkzoigzy Scheduler offcputime wakeuptime
profile p File Systems / TCP/UDP - 'PREvRRelEaS Bokbnral
: slabratetop
btrfsdist / Volume Man r | , :
btrfsslower olume Nanage P Virtual 4__/ oomkill memleak
: shmsnoop drsnoop
ext4dist extdslower . . Memory
nfsslower nfsdist 4 Block Device Net Device b
xfsslower xfsdist ~— criticalstat
zron owes / / Device Drivers ttysnoop
zfsdist
mdflush 15 ,top biosnoop tcptop tcplife tcptracer
) biolatency bitesize tcpconnect tcpaccept tcpconnlat 1lestat | CPUs
Other: tcpretrans tcpsubnet tcpdrop L
capable sofdsnoop tcpstates

https://github.com/iovisor/bcc#tools 2019

m

eBPF projects SH

- Cilium EE
€& Kubernetes-related projects for network
€ (Nl to bring eBPF-aware networking to Kubernetes
with:
e |oadbalancing
e Network policy L7 aware

€ Hubble for observability in Kubernetes networking NN
related stack m . EEEEE

e Metrics, tracing -

HEER

eBPF projects

246

N2 2% T

Check a bigger, updated and more detailed list on

https:/ebpf.io/applications/

Those projects look awesome and very promising

The ability to expose metrics un-exposable otherwise is

astonishing

But how exactly is this possible 7

€ Let's stop with the vagueness around observability and
eBPF and let's dig into implementation details

https://ebpf.io/applications/

Kprobes, uprobes, .
[racepoints, ...

They were there all along ! o eSS
| ENEEEN

248

Probes and tracepoints

-

vV

Before "modern” monitoring like eBPF allow us to do, there
were already concepts in the kernel to get events

€ From the early 2000's

It was mostly for instrumentation and debugging than
observability

Mostly aimed for kernel developers at first

Then brought to more people

Probes and tracepoints Ei8

AN EEEE
-> There are 2 categories of event source in the kernel

€ Dynamically defined tracing points (Probes)

€ Statically defined tracing points (Tracepoints)
=> Linux offers:

€ Tracepoints

€ Kprobes EEEE
-> Butalso for userland: T

€ Uprobes N

¢ (USDT) m EEEEE

249

Probes and tracepoints

250

User Space

Overview of Tracing System

Front-End

Kernel Space

‘ - B\ eSS
. Tracing Framework }
|

Event Sources

25!

robes and tracepoints

Linux Tracing Tech-Stack
author: leezhenghui@gmail.com

Front-End
| (e.q: perf, perf-tools, trace-cmd, bce,systemtap etc)

|
| ===

>

.......................................

! sampling-with-post-processing tracer |

User Space

sampling

Kernel Space

Tracing Framework
| (events count, filter, dumper)

in-kernel programmable tracer

Hardware Events
[(CPU Performance Monitor Counters)

Software Events
(e.g: context swtich, page fault, etc)

(e.g: eBPF, SystemTap)

Kernel Tracepoint Events
(static kemel-level probes va placing

TRACE_EVENT macros in kernel source mdi)J

" (e.g: trace-cmd, perf record & perf script) | ."m

Event Sources

User-Level Statically Defined
Tracing Events
(systemtap: sdt probes, DTrace: usdt

probes)

I—

Dynamic Tracing Events

(kernel-level: kprobe, user-level: uprobe)

~

levents summarize |
:and(or) aggmgate

---‘.-_-

252

Probes and tracepoints

N2 20 R

Probes and Tracepoints are to collect “data”

The way there are used, called and how the data is then
exposed depends on the tracing framework

eBPF is, among other things, a tracing framework
lovisor/bcc presented briefly is a front-end

Probes and tracepoints Ei8

AN EEEE
What is the difference between kprobes and tracepoints ?

Tracepoints are defined statically

€ TRACE_EVENT macro in the kernel
They had no overhead if disabled

€ Except for a small comparison

Once enabled, notify with info observers

N 2 20
1 5
EI===I.III

253

254

Probes and tracepoints

N 2 2 N R 2 2

What is the difference between kprobes and tracepoints ?
kprobes are defined dynamically

They don't require a "kprobe” event to be defined in the code
You can compare it to a breakpoint with your debugger

You can place it almost everywhere

€ Beginning and end of functions via k(ret)probe

It replaces an instruction to be executed by an INT3

The kprobe handler will check from where the trap comes
from

It will then report what is needed to the kprobe subscriber(s)

Tracing framework Tl EeaEs

A probe on its own is hardly usable = EEEEEEEEE
H ERENEN

Tracing framework

256

N 2B 20 2

Probes and tracepoints reports data to a subscriber

The subscriber is defined by the tracing framework used
One example: eBPF

eBPF allow you to define a small program and attach it to a
probe/tracepoint

Once the probe is fired, it calls your eBPF program

€ Argument to the probes are forwarded to your program
€ You can sometimes instrument them

€ Ordosome logic and report things

Tracing framework Ea8

AN EEEE
=> Only a limited amount of tracing frameworks are available in

linux
=> eBPF, ftrace and perf_event are the 3 main choices
€ There are also out-of-tree options (SystemTap, Ittng, ...)

257

25

ftrace component stack

trace-cmd
stysaEmeldaiotiacg
tracefs) ...-" ’
(debugfs) _ trace,
trace_pipe,
User trace_marker
.. .-
Kernel '
frace rxtrace . printk() ; .
[(ring \). ..~
/ buffer |
event tracer
L
— = latency tracer
: kprobe uprobe Cwakeup N
tracepoints _(kretprobe) (uretprobe) - hwilat 5
A (- lrgsoft H
i {Bataeaes e
...... e other tracer
| USDT |
Fmio
E-blockl/O

Adapted from hatena blog- "How perf, ftrace works"

perf_event

259

| perf_event_open(2) l

User

perf_event component stack

perf

Kamnel Aftach via ioct

perf_event

sampli

Tracepoint

perf_trace,_buf_sumbit()

— ey
. kprobe uprobe]
[racepoints J Ekretprobe) (uretprobe

..............

Adapted from hatena blog- "How perf, ftrace works"

bt pert everuput)

ring

/ buffer

perf_event_output()

Hardware

HW Breakpoint

mmap ring buffer

fEEER
H |1
e fAEEn
H EEEN
ENNEEN
ENEEn
fmEm
BPF For Tracing
Kernel Space
User Space Runtime
GESSSaSresananaarfsnmoaannffe o
BPF 1. generate : verifier + JIT
Program I‘_ i
BPF bytecode | 2oad ——| IS EventTargets
Event attach i 5 — 7 ——
Config | i '~ BPF | uprobes b, UsDT
= Bu i
perf-event 3. pert_¢ utpi/_—l :. ™ tracepomts so far, most of front-end tools
data <« = = : i (static racing implements USDT via leveraging
== > i] pert ev uprobes techonology under-the-hood
3. async g ‘ i | (sampling, PMCs T
statistics [« read/update ! maps - ‘
l‘mm-mv L aanm=as

Adapted from Brendan Gregg's blog post - "Linux Extended BPF (eBPF) Tracing Tools"

260

Frontends

Let's build some fancy tool on top of
these

Frontends sams

There are multiple frontends options for each framework 1

The frontend usually is meant to leverage the framework
easily
Write human-readable code, and compile it in eBPF bytecode
for example
Provide awk-like scripts

: : - : : fEEn
Essentially a simplification of the interfaces and syscalls T
€ Sometimes shipped with a library in a given language mEE

N2 2 2
o
0

262

Frontends sams

Y EEER
—> Quite some frontends can be named:

Perf (for perf framework and ftrace)
trace-cmd

Bcc

Bpftrace

LTThg mEEE
SystemTap EEEEE

0060000

263

perf-tools

perf bec trace-cmd

mmaped tracefs
ring buffer perf_event_open(2) bpf(2) (debugfs)

- bpf_perf_event_output() trace, trace_pipe, trace_marker

attach via ioctl
perf_event_output() perf_event e—— eBPF > BPF map

- counting
- sampling

bpf_trace_printk() W . buft
" ring buffer
(per cpu, global)

pd

event tracer

latency tracer

Hardware Software ‘ HW Breakpoint

Tracepoint

- wakeup

- Context switch Pert-5) / -ir:'ws‘ztff reemptsoff
- Page faults ' function tracer R BOP P

Performance tracepoint kprobe uprobe based on mcount
Counter P (kretprobe) (uretprobe) - call graph other tracer . . .

. : i i - stack tracing
- CPU cycle Static Tracing Dynamic Tracing _— - mmio

- Cache miss /sys/kernel/debug/tracing/events - block I/0
i usDT - branch

2b4

nsswitch digression Tl Eeicaes

Understanding glibc behavior as seen by . “EEEsEEEEEE
strace(1) 5 EEEEESE

nsswitch sams

266

N

AN EEEE
Unix world offers a few files to handle its system
configuration
Examples of those includes /etc/passwd, /etc/group,
/etc/hosts, ...
While those files works great and suit basic behavior, there
are still a bit limited mEEE
What if we wanted to handle servers’ access for the L foEEE
employees of a company ? EEE
€ There are hundreds of employees, thousands of systems ® _HEEEE

[]
€ Handling each system individually is difficult and tedious H =IEEE
HEER

nsswitch sams

267

-

N EEEE
How can we extend this behavior to use other kind of

services in order to provide those information ?
For example, connect to a database to get user information
€ LDAPis afamous protocol for this
How to handle a DNS system a bit more clever than a simple
/etc/hosts + /etc/resolv.conf 7

: fEEn
€ \With cache EEEEE

€ \With per-interface domain resolution for example EEE
¢ . N EEEEE

nsswitch sams

268

AN EEEE
GNU C Library allow us to extend and change the default
behavior via a configuration file, /etc/nsswitch.conf
nsswitch, for Name Service Switch in part of the glibc
€ Andalso introduced in other software due to its

popularity

The /etc/nsswitch.conf allow to change the configuration on
how to find such Name Service information SNEEEEEE
It has a pluggable approach, with shared libraries uEE

€ Anyone can write a plugin to plug in the nsswitch system = SEEEE

nsswitch.conf(5) SEEE

AN EEEE
> Default /etc/nsswitch.conf contains the basic configuration

to use the default plugins for traditional UNIX config files

269

o000

$ cat /etc/nsswitch.conf

files
files
files
files

files dns
files

db files
db files
db files
db files

nis

271

nsswitch.conf(5)

Default /etc/nsswitch.conf contains the basic configuration to
use the default plugins for traditional UNIX config files
It has a simple format:
€ Name service: <plugin 1> <plugin 2> ...
e There are some limited option to add on each plugin
also
-> Let's check a few classic configurations

nsswitch.conf(5)

272

N N 2

passwd: files systemd Idap

For the passwd name service, first is to check with the files

plugin

The files plugin is implemented via /usr/lib/libnss_files.so.2

It implements the default UNIX behavior, by looking in

/etc/passwd

The next data source is implemented by libnss_systemd.so.2

€ Itimplements a connector to ask systemd(1) or some
specific systemd service via a systemd API information

€ nss-systemd(8)

nsswitch.conf(5) SEEE

273

Vil

e EEEE
passwd: files systemd Idap

Idap is provided by nslcd and its libnss_ldap.so.2

Used to query nslcd daemon which connect to remote
configurable LDAP server and gets users, passwords and
groups from

Because of the multiple ways of finding passwd information
(different name services), cat /etc/passwd is not enough e T
Prefer using getent passwd NN

nscd digression

Understanding glibc behavior as seen by
strace(1) ErrrEEEEEE

nscd SERE

AN EEEE
On top of described behavior by nsswitch and glibc, another

mechanism exists to provide cache for name service queries
While /etc/passwd file for example is pretty much
iInexpensive to read, DNS queries or LDAP connection are
expensive
Having cache for them is great

, _ IEEN
It's the role of nscd to provide such cache NeEEE
€ Henceits name, Name Service Cache Daemon 1

K7
|
LB |
L1
H EEE B
EEEEEE EEN
EEENEENEEEEE
EEEEEEEEEEEE
EEEEEEEEEEEE

275

nscd SERE

Y EEER
nscd as its name indicates is a daemon

€ It might not be installed on your machine, or not running
It exposes a UNIX socket in /var/run/nscd/socket

By default, the glibc connects to this socket automatically

€ Before contacting a name service source as provided by

/etc/nsswitch.conf

If the socket can't be opened, it ... retries a second time SNEEEEEE
If nscd is not running, or doesn't have the info in cache, it falls EEE
back to the default nsswitch mechanism H S EEEEE

K7
|
LB |

L1
H EEE B
EEEEEE EEN
EEENEENEEEEE
EEEEEEEEEEEE
EEEEEEEEEEEE

K7
|
]
]
]
[| |

276

o000

socket (AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 3

 connect(3, {sa_family=AF_UNIX, sun_path="/var/run/nscd/socket"}, 110) = 0
sendto(3, "\2\0\0\0\v\0\0\0\7\0\0\0Opasswd\0", 19, MSG_NOSIGNAL, NULL, 0) = 19
poll([{fd=3, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) = 1 ([{fd=3,
revents=POLLIN|POLLHUP}])

> recvmsg(3, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="passwd\0", iov_len=7},
{1ov_base="\3100\3\0\0\0\0O\0", iov_len=8}], msg_iovlen=2, msg_control=[{cmsg_len=20,
cmsg_level=SOL_SOCKET, cmsg_type=SCM_RIGHTS, cmsg_data=[4]}], msg_controllen=20,
msg_flags=MSG_CMSG_CLOEXEC}, MSG_CMSG_CLOEXEC) = 15

6 mmap(NULL, 217032, PROT_READ, MAP_SHARED, 4, 0) = 0x7fael9b4b000

/ getrandom("\x76\x85\x0c\xee\x32\xae\x07\x34", 8, GRND_NONBLOCK) = 8

8 brk(NULL) = 0x55ae3363c000
9 brk(0x55ae3365d000) = 0x55ae3365d000
) close(4) =0

close(3) (0]

nscd SERE

AN EEEE
In previous example

nscd is answering

Answers with a pointer to a shared memory to mount, that
contains the asked database

mmap(2) right under

Voobv iy
m

278

00

1 socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) =

2 connect(3, {sa_family=AF_UNIX, sun_path="/var/run/nscd/socket"},)= ENOENT (No such file or directory)
3 close(3) =

4 socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) =

5 connect(3, {sa_family=AF_UNIX, sun_path="/var/run/nscd/socket"},)= ENOENT (No such file or directory)
6 close(3) =

7 getrandom("\x0e\x3e\xfO\xab\x82\xb2\xc4\x99", 8, GRND_NONBLOCK) =

3 brk() =

9 brk() =
10 newfstatat(AT_FDCWD, "/etc/nsswitch.conf", {st_mode=S_IFREG| , st_size= s «soty 0) =
11 newfstatat(AT_FDCWD, "/", {st_mode=S_IFDIR| , st_size= , .o}, 0) =
12 openat(AT_FDCWD, "/etc/nsswitch.conf", O_RDONLY|O_CLOEXEC) =

13 newfstatat(3, "", {st_mode=S_IFREG| , st_size= S AT EMB IR P ATTH) =

4 read(3, "# Name Service Switch configurat"...,) =
15 read (i3, “*,) =
16 newfstatat(3, "", {st_mode=S_IFREG]| , st _size= , +..}, AT_EMPTY_PATH) =
17 close(3) =

18 openat(AT_FDCWD, "/etc/passwd", O_RDONLY|O_CLOEXEC) =

19 newfstatat(3, "", {st_mode=S_IFREG]| , st_size= , ...}, AT_EMPTY_PATH) =
20 lseek(3, 0, SEEK_SET) =

21 read(3, "root:x:0:0::/root:/usr/bin/zsh\nb"...,) =

22 close(3) =

Thanks |

Questions ?/

Slides available on zarak.fr/

Contact: cyril[@cri.epita.tr
zarak production#5492

281

282

Sources

lwn.net/Articles/904892/ - The ABI status of ELF hash tables [LWN.net]
lwn.net/Articles/330589/ - KSM tries again [LWN.net]
lwn.net/Articles/229096/ - SLUB: The unqueued slab allocator V6 [LWN.net]
lwn.net/Articles/288056/ - TASK _KILLABLE [LWN.net]

lwn.net/Articles/379748/ - Huge pages part 5: A deeper look at TLBs and costs
[LWN.net]

lwn.net/Articles/317814/ - Taming the OOM killer [LWN.net]
lwn.net/Articles/83588/ - 2.6 swapping behavior [LWN.net]
lwn.net/Articles/82759/ - Kernel development [LWN.net]

lwn.net/Articles/793073/ - (hopefully) saner refcounting for mountpoint dentries
[LWN.net]

lwn.net/Articles/330985/ - driver-core: devtmpfs - driver core maintained /dev tmpfs
[LWN.net]

lwn.net/Articles/331818/ - The return of devfs [LWN.net]
lwn.net/Articles/612878/ - The BPF system call API, version 14 [LWN.net]

283

Sources

lwn.net/Articles/870269/ - Taming the BPF superpowers [LWN.net]
lwn.net/Articles/664688/ - Persistent BPF objects [LWN.net]
lwn.net/Articles/740157/ - A thorough introduction to eBPF [LWN.net]
lwn.net/Articles/779120/ - Concurrency management in BPF [LWN.net]

lwn.net/Articles/787856/ - BPF: what's good, what's coming, and what's needed
[LWN.net]

lwn.net/Articles/785263/ - Managing sysctl knobs with BPF [LWN.net]
lwn.net/Articles/803890/ - Filesystem sandboxing with eBPF [LWN.net]
lwn.net/Articles/8187 14/ - Dumping kernel data structures with BPF [LWN.net]
lwn.net/Articles/825415/ - Sleepable BPF programs [LWN.net]
lwn.net/Articles/856005/ - Calling kernel functions from BPF [LWN.net]
lwn.net/Articles/873244/ - Controlling the CPU scheduler with BPF [LWN.net]
lwn.net/Articles/794934/ - Bounded loops in BPF for the 5.3 kernel [LWN.net]
lwn.net/Articles/132196/ - An introduction to KProbes [LWN.net]

Sources

lwn.net/Articles/346470/ - Fun with tracepoints [LWN.net]
lwn.net/Articles/379903/ - Using the TRACE _EVENT() macro (Part 1) [LWN.net]

github.com/brendangregg/perf-tools/blob/master/kernel/kprobe - perf-tools/kprobe at master -
brendangregg/perf-tools

juns.ca/blog/2017/07/05/linux-tracing-systems/ - Linux tracing systems & how they fit together

terenceli.github.io/%E6%8A%B0%E6%SC%AF/2020/08/05/tracing-basic - Linux tracing - kprobe, uprobe and
tracepoint

github.com/iovisor/bcc - iovisor/bcc: BCC - Tools for BPF-based Linux 10 analysis, networking, monitoring, and
more

oreilly.com/library/view/understanding-the-linux/0596005652/ch04s07.html - 4.7. Softirgs and Tasklets -
Understanding the Linux Kernel, 3rd Edition [Book]

docs.kernel.org/scheduler/index.html - Linux Scheduler — The Linux Kernel documentation

github.com/0OxAX/linux-insides - GitHub - OxAX/linux-insides: A little bit about a linux kernel .===
kernel.org/doc/html/latest/admin-guide/mm/hugetlbpage.html - HugeTLB Pages — The Linux Kernel .===
documentation [| NN
kernel.org/doc/html/latest/admin-guide/mm/idle_page _tracking.html - Idle Page Tracking — The Linux Kernel ..===
documentation]

284 -
EEENn

Sources

baeldung.com/linux/process-states - Linux Process States | Baeldung on Linux

haydenjames.io/what-is-iowait-and-linux-performance/ - What is iowait and how does it affect Linux
performance?

unix.stackexchange.com/questions/16738/when-a-process-will-go-to-d-state - linux - When a process will go
to 'D' state? - Unix & Linux Stack Exchange

stackoverflow.com/questions/71862781/how-to-make-a-process-to-enter-d-state - linux - How to make a
process to enter D state? - Stack Overflow

unix.stackexchange.com/questions/539733/what-are-the-non-numeric-irgs-in-proc-interrupts - linux kernel -
What are the non-numeric IRQs in /proc/interrupts? - Unix & Linux Stack Exchange

elixir.bootlin.com/linux/latest/source/arch/x86/include/asm/irq_vectors.h - irq_vectors.h -
arch/x86/include/asm/irq_vectors.h - Linux source code (v5.19.2) - Bootlin

blog.dixo.net/irg.png
alexonlinux.com/smp-affinity-and-proper-interrupt-handling-in-linux - SMP affinity and proper interrupt 11
handling in Linux - Alex on Linux .===
kernel.org/doc/html/latest/admin-guide/mm/ksm.html - Kernel Samepage Merging — The Linux Kernel EEEn
documentation u 11
EEEE
ETNEEN
EER
285 L1
EEENn

Sources

kernel.org/doc/html/latest/RCU/whatisRCU.html - What is RCU? — “Read, Copy, Update” — The Linux Kernel
documentation

zeph1912.github.io/notes_and_journal _repo/kernel _softirg.nhtml - Softirg | Zephyr's study notes
unix.stackexchange.com/questions/591243/counting-the-number-of-issued-syscalls -

linux - Counting the number of issued syscalls - Unix & Linux Stack Exchange

rr-project.org/ - rr: lightweight recording & deterministic debugging
man7.org/linux/man-pages/man7/shm_overview.7.html - shm_overview(7) - Linux manual page
Linux-kvm.org - KVM

man?.org/linux/man-pages/man2/prctl.2.html - prctl(2) - Linux manual page
man7.org/linux/man-pages/man5/core.5.html - core(5) - Linux manual page

kernel.org/doc/html/latest/admin-guide/mm/index.html - Memory Management — The Linux Kernel
documentation

kernel.org/doc/html/latest/admin-guide/mm/concepts.html - Concepts overview — The Linux Kernel
documentation

llwn.net/Articles/306704/ - /dev/ksm: dynamic memory sharing [LWN.net]

kernel.org/doc/html/latest/admin-guide/mm/numa_memory _policy.html - NUMA Memory Policy — The Linux

86 Kernel documentation

Sources

kernel.org/doc/html/latest/admin-guide/mm/numaperf.html - NUMA Locality — The Linux Kernel
documentation

kernel.org/doc/html/latest/admin-guide/mm/pagemap.html - Examining Process Page Tables — The Linux
Kernel documentation

kernel.org/doc/html/latest/admin-guide/mm/swap _numa.html - Automatically bind swap device to numa node
— The Linux Kernel documentation

kernel.org/doc/html/latest/admin-guide/mm/zswap.html - zswap — The Linux Kernel documentation

stackoverflow.com/questions/7880784/what-is-rss-and-vsz-in-linux-memory-management - What is RSS and
\/SZ in Linux memory management - Stack Overflow

tothenew.com/blog/understanding-memory-utilization-in-linux/ - Understanding Memory Utilization in Linux |
TO THE NEW Blog

man7.org/linux/man-pages/man7/user_namespaces.7.html - user_namespaces(7) - Linux manual page]

redhat.com/sysadmin/dissecting-free-command - Dissecting the free command: What the Linux sysadmin needs .===
to k Enable Sysadmi

0 know | Enable Sysadmin 11
kernel.org/doc/gorman/html/understand/understand011.html - Slab Allocator - l===
man?.org/linux/man-pages/man5/slabinfo.5.html - slabinfo(5) - Linux manual page T T
ETEER
EEn
287 (1|
EEENn

Sources

linuxize.com/post/free-command-in-linux/ - Free Command in Linux | Linuxize

man7.org/linux/man-pages/man5/procfs.5.html - proc(5) - Linux manual page

tecmint.com/linux-process-management/ - All You Need To Know About Processes in Linux [Comprehensive
Guide]

devm.io/programming/linux-process-states-173858 - What are the process states in Unix/Linux?

stackoverflow.com/questions/67769737/check-if-the-process-in-in-running-state-or-runnable-state-in-linux -
Check if the process in in RUNNING state or RUNNABLE state in Linux - Stack Overflow

elixir.bootlin.com/linux/latest/ident/task _struct - task _struct identifier - Linux source code (v5.19.5) - Bootlin

elixir.bootlin.com/linux/latest/source/include/linux/sched.h - sched.h - include/linux/sched.h - Linux source code
(v5.19.5) - Bootlin

stackoverflow.com/questions/22101574/how-to-figure-out-if-process-is-really-running-or-waiting-to-run-on- 1|
linux - how to figure out if process is really running or waiting to run on Linux? - Stack Overflow

eklitzke.org/uninterruptible-sleep - Uninterruptible Sleep .===
elixir.bootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE - TASK_UNINTERRUPTIBLE identifier - Linux .===
source code (v5.19.5) - Bootlin m EEE
opensource.com/article/19/2/fair-scheduling-linux - CFS: Completely fair process scheduling in Linux ..===
EEn
288 1
EEENn

Sources

docs.kernel.org/scheduler/sched-design-CFS.html - CFS Scheduler — The Linux Kernel documentation

Oxax.gitbooks.io/linux-insides/content/Interrupts/linux-interrupts-9.html - Softirg, Tasklets and Workqueues -
Linux Inside

sites.google.com/site/masumzh/articles/x86-architecture-basics/interrupts-faults-and-traps - Masum Z Hasan,
PhD - X86 Architecture basics: Interrupts, Faults and Traps and 10

wiki.osdev.org/Interrupts - Interrupts - OSDev Wiki

en.wikibooks.org/wiki/X86 _Assembly/Programmable _Interrupt_Controller - x86 Assembly/Programmable
Interrupt Controller - Wikibooks, open books for an open world

intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vo
|-3a-part-1-manual.pdf - 64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

man7.org/linux/man-pages/man2/madvise.2.html - madvise(2) - Linux manual page

] |
kernel.org/doc/html/latest/admin-guide/mm/transhuge.html - Transparent Hugepage Support — The Linux
Kernel documentation 11
: : : : : EEEN
docs.kernel.org/admin-guide/mm/index.html - Memory Management — The Linux Kernel documentation T 1
kernel.org/doc/html/latest/filesystems/vfs.html - Overview of the Linux Virtual File Systemn — The Linux Kernel u .===
documentation EEEN

]
]]
289]
[| |

Sources

books.gigatux.nl/mirror/kerneldevelopment/0672327201/ch12levisec7.html - The Dentry Object
developer.ibm.com/tutorials/I-completely-fair-scheduler/ - Inside the Linux 2.6 Completely Fair
Scheduler

290

