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Introduction
Generic information about the course



Why should you listen to the course ?

➔ Linux is a state of the art in the industry
➔ Understanding in details will help you as low-level 

engineers
➔ Provide some tools useful to work with Linux
➔ Help you acquire an analytic mind to tackle low-level 

issues
➔ Subject somewhat difficult
➔ Getting a decent grade
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Notions
➔ ptrace
➔ strace & rr
➔ ebpf
➔ auditd
➔ kprobes/uprobes/tracepoint
➔ perf
➔ pseudo filesystems
➔ VFS
➔ iptables/nftables
➔ initramfs
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➔ PXE
➔ dracut
➔ BCC
➔ CPU & scheduler metrics
➔ Memory management & metrics
➔ Systemd
➔ …



Understand 
observability
Observability applied to Linux



Observability

6

➔ Observability is a high-level notion
➔ Observability means understanding what is going on in a 

system
➔ Observability in its modern approach has 3 pillars:

◆ Metrics
◆ Logs
◆ Tracing

➔ Linux is the core of all our foundations
➔ We need to have observability in it

◆ To better understand, to administrate it
◆ To debug



Observability in Linux
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➔ Linux thankfully offers interfaces for observability
➔ What are the first things that come to your mind when you 

think about observability and Linux ?
◆ What are the things you want to observe ?
◆ What are the interface(s) you will use ?



Get information about 
CPU usage
Let’s start with something “simple”



CPU and linux
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➔ What does CPU usage means ?
◆ 0, 50, 100% ?
◆ 800% ?

➔ It a percentage of time spent working on stuff, otherwise 
idling

➔ How do we get this number ?
◆ top, htop
◆ mpstat



CPU and Linux
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➔ How does they get the information ?
➔ Let’s pause this question and investigation, and focus on the 

methodology here



“
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I have a tool behaving in a way 
that is unknown to me.

How do I figure out how it 
works?



How does it works ?
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➔ mpstat returns CPU usage, along with some useful 
information

➔ Does it create this information ?
➔ Does it collect this information from somewhere ?

◆ Is it on the network ?
◆ Is it on the machine ?

● Our filesystem ?
● Any other mean ?



How do we get this info ?
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➔ 2 hypothesis:
◆ The CPU usage information is returned by the hardware 

directly
◆ The CPU usage is computed by the kernel and reported

➔ How can we figure this out ?
◆ Knowing that mpstat knows the answer

➔ The most straightforward solution would be to read mpstat 
source code
◆ But before actually doing this, let’s play a small game 



What are the interfaces offered ?

How do we contact 
the kernel ?



Kernel interfaces
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➔ The “only” interface is a syscall
◆ All other high-level interfaces are syscall-based

➔ A syscall can gives us information directly:
◆ gethostname(2)
◆ gettimeofday(2)
◆ getcpu(2)
◆ getcwd(2)
◆ …



Kernel interfaces
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➔ Some syscalls are used to reach higher level interfaces
◆ open(2), openat(2), read(2), write(2), close(2)

➔ What are higher level kernel interfaces ?
◆ /proc/….
◆ /sys/….
◆ /dev/…
◆ /sys/kernel/debug/…
◆ /sys/kernel/security/…
◆ /sys/firmware/efi/efivars/…
◆ /sys/fs/cgroup/…



Kernel interfaces
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➔ Are other syscalls used for higher level interfaces ?
➔ Yes:

◆ socket(2)
◆ ioctl(2)
◆ bpf(2)
◆ perf_event_open(2)
◆ ptrace(2)



Kernel interfaces
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➔ Let’s get back the special directories mentioned before 
(/sys, /proc, …)

➔ How are they special ?
➔ They aren’t “real files” on your SSD

◆ In fact you can open your SSD on another machine and 
check that by yourself in a very easy and naive way

➔ The files there are kernel interfaces in the forms of a file
◆ “In UNIX, everything is a file”

➔ Those are pseudo-filesystems
➔ But more about that later …



So, what about mpstat ?

Back to our CPU 
usage analysis



mpstat
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➔ mpstats like almost everything on a classic linux distro is 
open-source

➔ Checking source code is therefore a good reflex for things 
like this

➔ Let’s read mpstats source code
➔ Code is well written

◆ Follow many standards
◆ Proper naming convention
◆ Comments
◆ ….

https://github.com/sysstat/sysstat/blob/master/mpstat.c


mpstat
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➔ Code is quite short but finding the information still took time
➔ Can we make this more efficient ?
➔ What could be another approach than reading source code ?

➔ What do we know or deduced ?
◆ The information is probably held by the kernel
◆ mpstat gets this information
◆ Communication between userland and kernel land is 

done via syscalls
◆ Could we just look at the syscalls mpstats did ?



Let’s ptrace mpstat
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➔ Linux offers a syscall and its interface to debug softwares
➔ ptrace(2)

◆ But more about it later …
➔ Used to debug, like GDB, to see what is going on, inspect 

code, variable values, etc
➔ What if we have a special debugger ?

◆ This debugger will just run the program
◆ But whenever a function is called, it checks if it a syscall 

function ?
● But wait, are syscall functions ?



How is implemented a syscall in the end ?

Some syscall digression



What are syscalls ?
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➔ We know that a syscall is a kernel function that is called 
from userland
◆ Sort of 

➔ But are we allowed to call directly a function like this ?
➔ In x86 (IA_32 and x86-64) we run code on the CPU in rings

◆ ring 0 is the most privileged one
● Allowed to access hardware and configure the CPU 

directly
◆ ring 3 is the one userland runs in. Can do computation, 

but cannot run some privileged CPU instructions



CPU rings
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What are syscalls ?
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➔ The kernel runs in ring 0
➔ The kernel can therefore do things regular process can’t
➔ Regular process still need to access some protected devices 

or perform some privileged operations
◆ In a controlled environment (permissions, ….)

➔ They contact the kernel for those operations via syscalls
➔ The kernel checks permissions, do sanity checks, etc and 

performs the operation
➔ The result, if any, is returned to the user



What are syscalls ?
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➔ Syscalls are the interface between userland and the kernel
➔ Allows privileged operation, control kernel behavior or use 

kernel features
➔ Allow abstraction (disk drivers, network drivers, ….)
➔ How can we call a ring 0 function from ring 3 ?

◆ Do we have symbols exported ?
➔ In x86 we have 3 ways:

◆ INT 0x80 (legacy)
◆ sysenter (IA_32)
◆ syscall (AMD64)



Syscall implementation in x86
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➔ INT 0x80 is hardly used anymore, it is a legacy way of 
making a syscall
◆ Creates an interrupt to notify the kernel

● But more about that later …
➔ sysenter is also called fast system call, created by intel for 

IA_32
➔ syscall is the AMD64 version, mostly used now



Syscall implementation in x86
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➔ When doing a syscall instruction, what happens exactly ?
➔ On syscall, the CPU looks in a specific MSR: IA32_LSTAR
➔ IA32_LSTAR MSR contains a ring 0 function address to 

execute
➔ In Linux, it’s entry_SYSCALL_64

◆ https://elixir.bootlin.com/linux/latest/source/arch/x86/entr
y/entry_64.S#L49

➔ Linux determines which syscall has been called in this 
function based on %rax

➔ The arguments to the syscall are in %rdi, %rsi, … as usual 

https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L49
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S#L49


Syscall implementation in x86
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➔ In entry_SYSCALL_64 we prepare everything to call the actual 
kernel function
◆ We save userland general purpose registers on the 

stack and do a few things
➔ We call the kernel function associated with the syscall 

requested, forwarding the arguments userland gave
➔ Once the kernel function returns, we put the return value on 

the stack
➔ We do a few things back, put the value from the stack back 

in registers and return



Syscall consequences
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➔ Calling a syscall means calling a kernel function through 
some steps

➔ The steps are to ensure security when switching from ring 3 
code to ring 0 (and vice-versa)

➔ These steps are called privilege switch
➔ Privilege switch is quite expensive:

◆ More instructions to execute
◆ No CPU pipelining/branch prediction/…
◆ Data shouldn’t be accessed directly and shall always go 

through copy_from_user/copy_to_user
◆ Pointers must be handled carefully



Some more information about syscall 
implementation

About vDSO



Virtual Dynamic Shared Object
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➔ Some syscalls are used a lot
➔ They don’t have any security and will behave the same for 

every user (privileged or not)
➔ To allow better performances, the kernel exposes some 

syscall directly in userland
➔ Userland implementation is done in vDSO
➔ Shared ELF object to every userland process

◆ Address fetcheable via auxiliary values
◆ Glibc gets it for you



Virtual Dynamic Shared Object
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➔ Contains some syscall, depending on the architecture
➔ gettimeofday(2), getcpu(2), …
➔ No privilege switch = faster

◆ No strace, no seccomp however



Virtual Dynamic Shared Object
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➔ Contains some syscall, depending on the architecture
➔ gettimeofday(2), getcpu(2), …
➔ No privilege switch = faster

◆ No strace, no seccomp however



Now we do know what a system call is

Let’s get back to 
mpstats system calls



Let’s ptrace mpstat
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➔ Linux offers a syscall and its interface to debug softwares
➔ ptrace(2)
➔ Used to debug, like GDB, to see what is going on, inspect 

code, variable values, etc
➔ What if we have a special debugger ?

◆ This debugger will just run the program
◆ But whenever a function is called, it checks if it a syscall 

function
◆ If so, prints arguments, resume execution and print 

return value



Discovering strace
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➔ A famous debugging tool for such purposes exists
➔ strace(1)
➔ In the simplest usage:

◆ Starts a process with given arguments
◆ Gets notified of all the syscalls the tracee performs
◆ Prints the syscall, its arguments and return value



Usefulness of strace

39

➔ When is strace useful ?
◆ Find out why a software fails
◆ Find out how it behaves if no documentation

● Ex: location of config files read by the app
● Ex: Interaction with other processes
● Ex: Memory impact and behaviour

◆ See where a software hangs (if on a syscall)
◆ ….

➔ strace is a very popular and versatile debug tool
◆ Simpler and quicker to use than GDB

● Not suited for all workflows though



How to strace ?
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➔ How to use strace(1) efficiently ?
➔ A few tips:

◆ Use -f to follow and strace forks too
◆ Use -z or -Z to see only successful or failed syscalls
◆ -c will give you a summary/overview of the syscalls 

used. Can be useful at first to have a sneak peak
◆ Discover the -e option



“
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Let’s discover strace -e and play 
with strace a bit



Strace can be difficult
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➔ Since strace will show every syscalls, it might be difficult to 
find what you’re looking for

➔ Especially if the software is huge
◆ Or we have limited knowledge on what to look for

➔ Example: pylint
◆ Where’s the configuration file ?
◆ Tracing open(2)/openat(2) ?



Strace can be difficult
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Strace can be difficult
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➔ Example: pylint
◆ Where’s the configuration file ?
◆ Tracing open(2)/openat(2) ?

● 991 openat(2) in this example
◆ Maybe grepping “cfg”, “yml” or “json” ?
◆ Actually file name is pylintrc
◆ And not even open/openat(2) if doesn’t exist !



Strace can be difficult
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Strace can be difficult
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➔ Useful sometimes to simulate a failure or to simulate a 
success of a syscall or a set of syscalls

➔ Need to have some knowledge of the software
◆ Or some intuition



CPU metrics
What is a CPU with linux ?



Understanding CPU metrics
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➔ A CPU core or thread shall already be known to you
➔ We’ve seen already 2 kinds of things a CPU can execute in 

this course:
◆ User code
◆ Kernel code

➔ What are the other things a CPU can do ?
➔ Fortunately a CPU isn’t always doing something: it can idle
➔ Let’s check the metrics exported by the kernel in /proc/stat



Understanding CPU metrics
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➔ User
➔ Nice
➔ System
➔ Idle
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest
➔ Guest_nice



Understanding CPU metrics
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➔ User -> userland code
➔ Nice
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest
➔ Guest_nice



Understanding CPU metrics
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➔ User -> userland code
➔ Nice
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice  -> kernel KVM gave nice CPU time to VM



Process niceness and 
scheduler
Why isn’t pulseaudio nice ?



CPU and multithreading
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➔ A classic PC/server runs dozens if not hundreds of 
processes in “parallel”

➔ A modern CPU has multiple cores, and multiples threads or 
logical cores/hyper-thread

➔ Let’s say our CPU has 16 logical cores
➔ I can truly execute 16 processes in parallel
➔ How can I give the impression it’s running 150 ?



CPU and multithreading
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➔ Most processes don’t need the CPU 100% of the time
➔ They need some time to work, and have to wait

◆ Timer, user input, IO, being activated back, …
➔ If most of them don’t need to actually run in parallel, we can 

split execution in small timeshares, and simulate parallel 
execution

➔ This is the role of the scheduler to provide such timeshares 
and execute processes



CPU and multithreading
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➔ Here is the classical representation of a Process state in 
Linux



Process states
Giving meaning to R/S/D/Z/T



CPU and multithreading
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➔ Actually it looks more like this



Process state
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➔ R state means running or runnable
◆ Either currently being executed on a CPU core (running)
◆ Or waiting for a core to be free and for the scheduler to 

start it (runnable)
➔ S state is the state some process will spend the most time 

in
◆ Waiting for an event, for I/O, for a timer, …

➔ T state is fairly easy to grasp, one stopped the process by 
sending a SIGSTOP signal



Process state
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➔ D state is a bit more shady
◆ Some linux syscall are not interruptible. It means that a 

process waiting for the syscall to complete cannot be 
killed.

◆ No signal can be transmitted, even SIGKILL
◆ Examples include some I/O syscalls, KVM related calls, 

etc
● https://elixir.bootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE

◆ Famous example often found is a NFS-related process 
stuck in D-state when NFS server is unreachable

https://elixir.bootlin.com/linux/latest/A/ident/TASK_UNINTERRUPTIBLE


Process state
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➔ Z state is for a zombie
◆ Zombie process is a process that has finished its 

execution but hasn’t been wait(2)-ed by its parent
◆ Its information remains and must be collected for the 

process to be removed from the process list
◆ Init process must wait for zombie process re-attached 

to it to maintain a clean system
◆ When a zombie is create, SIGCHLD is sent to parent 

process



What does it have to 
do with niceness ?
Exploring CFS



CFS - Completely Fair Scheduler

62

➔ The role of the process scheduler is to run process when it 
makes sense
◆ When they are ready to run
◆ When they can (i.e. a CPU core is available)

➔ Linux default scheduler is called CFS
➔ It divides time in timeslices
➔ It gives a timeslice to the process that is ready to be run and 

has been starving CPU time the most first



CFS - Completely Fair Scheduler
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➔ If the system is not overloaded, CFS doesn’t have to make 
important decisions
◆ Most process are in D/S state, and therefore very few in 

R state. Decisions are easy
➔ But if the system starts to be overloaded, CFS comes to play
➔ CFS selects the process that is missing the most vruntime, 

i.e. the process that should have been running but hasn’t
◆ Takes decision based on total execution time and how 

long it has been waiting 



CFS - Completely Fair Scheduler
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➔ CFS tracks process via a red/black tree
◆ On the left of the tree, process with the smallest vruntime 

➔ It is also able to dynamically change the length of the CPU 
timeslice based on the load:
◆ If a process is alone, it makes sense to give it a lengthy 

timeslice since it won’t impact anyone
◆ If 2 process requires each 50% of a single CPU core, to make 

them look like they run in parallel we need to alternate their 
execution
● But mind context_switch ! Intervenes 

sched_min_granularity_ns



CFS 
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CFS - Completely Fair Scheduler
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➔ But CFS is more complex than that
➔ Some process needs higher priority in their scheduling, 

because scheduling latency impacts
◆ I.e. audio

● audio doesn’t need a lot of CPU time
● But audio suffers heavily from latency

➔ This is the niceness of a process with linux
➔ The nicer the process, the less priority it gets
➔ Very nice process can still take 100% of a CPU core. They will 

just be descheduled if anyone else is asking for some CPU time



CFS - Completely Fair Scheduler
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➔ CFS also takes into account various other configuration
➔ Internally, it also has a concept of priority
➔ Priority is changed by niceness, but to a range only
➔ To access the other priority values, a process must change 

its scheduling class
➔ More info on sched(7)



CPU load
A metric often misunderstood



CPU load
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➔ CPU load can be understood as “how many operations my 
CPU is currently doing”

➔ This is a wrong understanding when it comes about the load 
metric reported by linux

➔ A better understanding would be “How much pressure is 
being applied to the CPU in average for a period of time”

➔ What does it measure exactly ?



CPU load
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➔ Linux load represents the number of processes running, or 
waiting to be ran on the system, in average for a period of 
time
◆ It also includes processes in uninterruptible sleep

● I/O matters
◆ It is not limited to a core -> all load values don’t have 

the same meaning on each machine
◆ Usually troubles begins when the load reaches the 

number of CPU cores



CPU load
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➔ 3 values exported in /proc/loadavg
◆ 1 min, 5min and 15min load
◆ Number of processes in R state / schedulable entities
◆ PID of the latest created process



CPU load
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➔ Having 3 loads metrics, and them being averages has 
impact

➔ There is delay between event and possible visualization on 
the curves

➔ load1 is closer to “instant” load while load15 is really 
difficult to pull in any direction



CPU load
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Load over time

Start of event

End of event



Let’s get back to our 
CPU metrics
We do know now who’s nice and who 
isn’t



Understanding CPU metrics
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➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice  -> kernel KVM gave nice CPU time to VM



Understanding CPU metrics
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➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait
➔ Irq
➔ Softirq
➔ Steal -> As a VM, hypervisor didn’t schedule us
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice  -> kernel KVM gave nice CPU time to VM



Understanding CPU metrics
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➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait -> time spent for a process waiting for I/O (unreliable)
➔ Irq
➔ Softirq
➔ Steal -> As a VM, hypervisor didn’t schedule us
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice  -> kernel KVM gave nice CPU time to VM



Quick tour of IRQ and 
softIRQ
Bringing some memory back



CPU interrupts
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➔ The way for the hardware to notify the CPU something is 
happening is through IRQ

➔ For example, the user moved its mouse or typed on its 
keyboard

➔ Paquets reached the machine and are waiting on the 
network card

➔ Without getting into too many details, the CPU gets notified 
of these events through the PIC (Programmable Interrupt 
Controller)



CPU interrupts (x86)
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➔ An interrupt stops the current CPU execution and executes 
an interrupt handler read on the IDT
◆ The IDT (Interrupt Descriptor Table) maps interrupts to 

handlers
➔ An interrupt can be triggered by external device (like the 

network card) or by the CPU itself
◆ In this case it’s called a software interruption

● Or an Exception (x86)
◆ Examples include a division by 0, or an INT instruction



CPU interrupts (x86)
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➔ Exceptions (or software interrupts) are of 3 categories: 
Traps, Fault and Abort
◆ A trap is reported after the execution (ex: INT) and allow 

process continuity
◆ A Fault is reported before the actual execution to allow 

to fix it (ex: div / 0)
◆ An Abort is when everything is on fire. Run.
◆ More about it in the x86 Intel manual



CPU interrupts (x86)
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➔ In linux, it’s translated as interrupts/IRQ (Interruption 
ReQuest) and softIRQ (software IRQ)

➔ Values are exposed in /proc/interrupts
➔ softIRQ in linux don’t show all x86 exceptions

◆ softIRQ displayed by Linux are limited, check 
/proc/interrupts

◆ softIRQ is a “primitive” system that has been partially 
taken over by tasklets

➔ There is no direct mapping between linux exposed values 
and x86 events



CPU metrics in the 
end
Putting everything together



Understanding CPU metrics
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➔ User -> userland code
➔ Nice -> process with high niceness
➔ System -> kernel-land code
➔ Idle -> CPU literally doing nothing (~no power usage, C-state)
➔ Iowait -> time spent for a process waiting for I/O (unreliable)
➔ Irq -> hardware interrupts
➔ Softirq -> software interrupts
➔ Steal -> As a VM, hypervisor didn’t schedule us
➔ Guest -> kernel KVM gave CPU time to VM
➔ Guest_nice  -> kernel KVM gave nice CPU time to VM



Understanding CPU metrics
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➔ htop CPU bars have colors representing the different kind of 
CPU metrics

➔ By default:
◆ blue = nice
◆ green = user
◆ red = kernel (+ iowait + irq + softirq)
◆ orange = guest (+ steal)



PSI - how to 
represent pressure
Getting a higher level metric to abstract



Monitor system going wrong
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➔ Let’s say you want to monitor your system and try to detect 
problematic states

➔ What is a problematic state ?
◆ Let’s define this in this context by “a state when your 

workload doesn’t run properly or in a degraded state, 
not exploiting your machine full capacity”

➔ In this case, is a 100% CPU usage defined as a problematic 
state ?



Understanding when a state is 
problematic
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➔ CPU is a complex metric to grasp when trying to investigate 
problematic situations
◆ Quite some metrics
◆ Easy to get fooled

● “OMG my CPU is spending all its resources on idle !!”
➔ CPU used at 100% doesn’t mean your application is disturbed
➔ In some cases, it can be impacted without reaching 100%
➔ Try to put your metrics in correlation with your application



Understanding when a state is 
problematic
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➔ 100% CPU usage when compiling the kernel
◆ Usually not a problem

● Indicates reaching your max capacity. You might 
want to upgrade your CPU maybe ?

◆ Can be if done alongside other workload
◆ Niceness to keep in mind

➔ It’s better to rely on what you observe
◆ Latency, mouse lag, etc
◆ How to program this ?



Monitor system going wrong
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➔ Load is an indicator indeed but:
◆ Relative value (number of cores)
◆ No indication of actual waiting time the process had to 

wait
◆ R+D state, so few faulty NFS process and the load goes 

up the roof
◆ Average over time



Monitor system going wrong
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➔ Linux proposes another metric: Pressure Stall Information
➔ From ~2018 by Facebook
➔ 3 metrics: io, memory and CPU
➔ Represent the % of time wasted because of processes 

conflicts for a resource
◆ You can have 100% used CPU core and 0% CPU PSI

➔ Has a polling interface
◆ Used to loadbalance workload in Facebook



What about memory ?
Yet another complex metric



Different kinds of memory
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➔ Memory is a wide term with different kinds:
◆ Volatile, fast memory (RAM)
◆ Non-volatile, slower memory (swap)

➔ When trying to understand memory for your system, 2 
kinds:
◆ Virtual memory
◆ Physical memory

➔ The kernel in combination with the MMU (Memory 
Management Unit) is responsible for abstracting memory to 
userland



Physical memory
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➔ Physical memory is divided in multiple places
◆ I.e. 4x16 GiB of RAM in 4 sticks
◆ 4 GiB of swap on your NVME disk

➔ Physical memory has its own address space
◆ Depends on the lanes you’re plugging the memory in, 

the motherboard, …
➔ Different sources of memory may have different latencies
➔ ….



Virtual memory
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➔ Userland doesn’t want to deal with this
➔ Userland wants a unique address space for memory
➔ For security reasons, userland processes must not be able 

to access memory from each other
◆ Per process address space

➔ Userland wants the kernel to do things for it
◆ Maybe he wants to interfere a bit with the decisions

● Advise, flush, …
● Control memory-related mechanisms  (i.e. swap)



Virtual memory
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➔ Memory will be used in multiple cases:
◆ Variable storage (or generic computation needs)
◆ Process executable binary
◆ Disk cache
◆ Kernel memory
◆ Page tables

➔ Memory is used with pages
◆ 4 kiB on AMD64
◆ Possibility to increase with THP (Transparent Huge 

Pages)



Process virtual 
memory
How do a process have access to 
“memory” ?



Process virtual memory
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➔ Each process has its own address space
➔ For obvious security reasons
➔ Each process address space is virtual

◆ 2 process can share the same address in their virtual 
memory that leads to completely different “real” 
memory

➔ Each process address space is flat: no segmentation
➔ Different sections in their address space however

◆ Everything is not identical 



Process virtual memory
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➔ Example include a process’ own executable code in a 
memory map, called text

➔ A process global variables in a data section
➔ ….
➔ Each process has a struct mm_struct to describe their virtual 

address space
◆ Actually threads share the same struct since they have 

the same address space
◆ https://elixir.bootlin.com/linux/v6.0.7/source/include/li

nux/mm_types.h#L486

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L486
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L486
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➔ Various interesting implementation details about struct 
mm_struct
◆ Like mmap & mm_rb fields

➔ Each process can have (and actually have) VMAs
➔ Virtual Memory Area
➔ Implements an area of virtual memory, with its property
➔ struct vm_area_struct
➔ https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/

mm_types.h#L397

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L397
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/mm_types.h#L397
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➔ A VMA is associated to a mm_struct
➔ It has flags (including R / W / X)
➔ Makes the link to a file (if not anonymous memory)
➔ VMAs can be seen in /proc/<pid>/maps
➔ Each call to mmap creates a VMA

◆ Sort of, sometimes if it possible, there are merged 
together



Pages and Huge pages
Lots of pages and yet not a book released
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➔ A page of 4 kiB means 256 000 pages for 1 GiB of RAM
◆ Memory overhead
◆ TLB - Translation Lookaside Buffer

➔ Possibility to have bigger pages to reduce costs
◆ 2 MiB instead of 4 kiB  -> 512 times less TLB entries

➔ Can be “dangerous”
◆ Pages allocated but not used don’t count
◆ You can malloc(1024 * 1024 * 1024); no RAM will be taken
◆ You write 1 bit, the page is actually taken
◆ You will waste more with huge pages
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➔ THP can be disabled system wide
◆ Or only used when explicitly asked with madvise(2)

➔ madvise(2) indicates what usage a portion of memory will 
be subjected to
◆ The kernel will apply optimization for such usage

➔ Usage includes:
◆ Normal
◆ Random
◆ Sequential
◆ willneed/dontneed

◆ (un)mergeable (KSM)
◆ (no)hugepage
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➔ People usually don’t care nor pay attention to THP
➔ Many applications will malloc(4 * 1024) 512 times instead 

of allocating (4 * 1024 * 512) directly
◆ Most never use madvise either

➔ Therefore, THP system would be unused and useless
➔ Linux introduces khugepaged and heuristics

◆ When allocation more than 2 MiB of RAM at once, you 
usually allocate a THP without knowing it

◆ khugepaged will look for pages to merge in a THP



Let’s talk about swap
Why swap is bad but still good (??)
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➔ For most people, memory = RAM
◆ It’s fast, usually big enough
◆ However volatile, so we need to be careful

➔ However RAM is pricey
◆ It’s quite easy to run out of RAM even with normal (but 

relatively heavy) applications/processes
➔ What happens when we run out of RAM ?

◆ If it’s the only memory: oom-killer
◆ If not: swap (then oom-killer if we abuse)
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➔ Use a persistent disk as a backing storage for more memory
➔ Disk can be of various nature (various costs and speed)

◆ HDD
◆ SSD
◆ NVME
◆ the shitty 1 GiB USB 1.0 key Capgemini or Sopra Steria 

gave you in exchange for a CV no one will take time to 
read

➔ Performances will suffer: swap is used as a last resort 
option
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➔ When do we swap ?
➔ Swap is used when memory pressure is high. You will not 

use swap before reaching a huge RAM usage first
◆ Swapped memory stays in swap if unaccessed even if 

the system memory goes down again
➔ What are the consequences ?

◆ Swapping out process that takes CPU time and I/O
◆ “Volatile memory” written to non-volatile device (!)
◆ (very) slow memory access on swapped out memory
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➔ Where on disk is stored swap ?
➔ 2 options:

◆ Dedicated partition on a disk
◆ Dedicated file on your filesystem

● Must be on a persistent storage (no tmpfs, duh)
➔ Swap device needs a specific partition type (mkswap(8))
➔ Can be enabled and disabled on runtime with 

swapon(2)(8)/swapoff(2)(8)
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➔ Why is swap bad ?
◆ Once you start swapping, performances goes down the 

drain (-ish)
◆ .. ?

➔ Why swap is needed ?
◆ Swap isn’t used if the system isn’t stressed
◆ Most OS or applications don’t have an efficient way to 

react on memory pressure to free-up memory
◆ Reaching the limits often means bad things
◆ There are traps when reaching high memory usage
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➔ What pages of memory shall be sent to the disk ?
◆ What are the best candidates ?

➔ Intuitively one will say:
◆ Memory rarely accessed
◆ Memory rarely written
◆ LRU

➔ On top of those cases, one important case to not miss is the 
memory file-backed, or non-anonymous memory
◆ i.e.: mmap() of a file, a process binary, …
◆ This memory is recoverable. We can evict it safely from 

memory altogether
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➔ Behavior of what to do when running out of performing 
memory is controllable via vm.swappiness

➔ The value range goes from 0 to 200 (recent kernel)
➔ It is often misunderstood
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➔ What people think (it’s wrong):
◆ vm.swappiness goes from 0 to 100
◆ It indicates the memory threshold at which the kernel 

will start swapping
◆ I.e: if vm.swappiness is at 60, if you take 59% of RAM, 

no swap, 61%, it will start swapping (maybe)
➔ This is stupid and wrong

◆ Why 60 % ? Why would the kernel voluntarily drop 
performances to swap ?
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➔ What it does:
◆ It’s a balance pressure indicator to put more pressure 

on swapping out anon pages and dropping recoverable 
file pages

◆ It’s from 0 to 200. 0 means aggressive on file pages, 
200 on anon pages

◆ The pressure finally applied is a bit complicated:
● Swappiness is ignored in some cases
● Pressure balance is ignored for some part of the list 

to ensure no leftovers
● Swappiness = 0 -> no swap unless big troubles
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➔ More information on 
https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.
c#L2731

https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.c#L2731
https://elixir.bootlin.com/linux/v6.0.6/source/mm/vmscan.c#L2731


Fear the OOM-killer
How linux kills userland processes by 
design
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➔ When reaching the final limit of available memory
➔ Kernel mechanism triggered on allocation failure
➔ Find the most suited process to kill

◆ Highest oom_score
➔ What is oom_score ?

◆ Per process score always maintained
◆ Amount of RAM being taken
◆ oom_score_adj
◆ Used to be more complex (user vs root process, HW 

direct access, …)
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➔ Configurable in /proc (like most kernel mechanisms)
◆ Can be disabled entirely

➔ Killing processes by design “omg wtf”
◆ What do you expect from a system running out of 

memory anyway ?
➔ Invocation and its actions logged in /dev/kmsg (dmesg(1))
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➔ Some people don’t like the OOM-killer
◆ But still reckon the job is useful

➔ Namely for a major reason: it intervenes when it’s late
◆ Often too late

➔ 3 projects exists to basically do the same thing, but in 
userland:
◆ earlyoom
◆ lmkd on Android
◆ Systemd-oomd (which uses memory PSI)



Kernel threads
You’re not the only one having daemons
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➔ The kernel does some tasks synchronously:
◆ Syscalls kernel code is executed when the user calls it

➔ But there are also asynchronous tasks to perform:
◆ Kswapd for example will swap out memory

● Even compress it with zcache enabled
◆ khugepaged does periodic scans to reduce memory 

fragmentation by merging pages in THP
➔ Kernel threads are visible with ps or htop like other 

processes
➔ They don’t have an associated mm_struct



Understanding 
memory metrics
Why is my process taking 17 GiB of RAM 
on my 16 GiB laptop ?
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➔ The memory metrics we’re the most interested in for basic 
usage is free memory
◆ In fact it’s incorrect. We want to know what memory is 

still usable for our process
➔ Free memory != Usable memory

◆ Caches
◆ Buffers

➔ When checking for available memory with free -m for 
example, be careful to read “available” and not “free”
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➔ The interface to check global memory usage for the 
machine is /proc/meminfo

➔ It lists memory and breaks it in different kind of usage
➔ It’s has a lot of fields, some of them are overlapping or 

imprecise
➔ It can be misleading and quite difficult to understand it



Memory metrics /proc/meminfo
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➔ Example on my 24 GiB laptop
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➔ Example on my 24 GiB laptop
➔ Buffers: kernel buffers, for block I/O & IPC
➔ Cached: file pages in memory

◆ Include tmpfs & shmem
◆ Exclude swapcached

➔ Swapcached: Memory that was in swap, was 
put back in RAM but kept in swap
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➔ Mem prefixed metrics don’t include swap
➔ Cached is a huge metric but also imprecise

◆ Code in the kernel itself to check if cached < 0
◆ Quite some subcomponents
◆ Despite the name, everything is not “cache” memory
◆ Everything can’t be reclaimed
◆ Can send partially to swap, but != swapcached

➔ Unevictable means memory that can’t be sent to swap
➔ Mapped is mmap(2)-ed files

◆ No anonymous mmap for example



Different kinds of 
memory
Complex graph shown above indicates 
how complex it actually is



Dirty memory

131

➔ When writing data to a file, by default the data isn’t actually 
written
◆ Well not directly, not always, and it’s difficult to predict 

default behavior
➔ Because of performances reasons, when writing to a file, 

the data is actually put in a special cache in the kernel
➔ This cache has a special name: dirty memory
➔ Dirty memory is a trick played on the user:

◆ We told them the data is written (write(2) succeeded)
◆ It’s actually not really on disk
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➔ Dirty memory is “dangerous”
➔ A hard failure of the system, bug in the kernel, or some 

nasty crash, and the data it lost
➔ Dirty memory must be flushed down to the disk
➔ Dirty memory helps for performances, but introduces a risk
➔ In fact, MacOS and windows do this as well

◆ “Don’t unplug the USB key without ejecting it”
➔ How to control dirty memory ?
➔ sync(2)
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➔ open(2) flags like O_DIRECT
➔ Check dirty memory size and watch for high or constant 

high values
◆ In might means that disks are a bottleneck

➔ The cache mechanism for write is called write-back
➔ It works with LRU lists

◆ Active and inactive list
● To handle one-access cache eviction case

◆ Known as LRU/2
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➔ Dirty memory (and page cache in general) is implemented 
with a struct address_space

➔ These structs are kept in a radix tree
◆ Meaning that the 

struct are ordered in 
a prefix tree by their 
address pointer
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➔ Flushing dirty pages to disk is done asynchronously
◆ Unless cache is full during a cache manipulating 

operation
➔ A page is flushed when it has stayed in the cache long 

enough
◆ Or when memory is running low
◆ Or when manually requested with sync(2)

➔ Behavior is also tunable via knobs in /proc/sys/vm
◆ There’s even a laptop_mode option !

● Sadly mostly useless nowadays
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➔ Flushing dirty pages to disk is done asynchronously
◆ Unless cache is full during a cache manipulating 

operation
➔ A page is flushed when it has stayed in the cache long 

enough
◆ Or when memory is running low
◆ Or when manually requested with sync(2)

➔ Behavior is also tunable via knobs in /proc/sys/vm
◆ There’s even a laptop_mode option !

● Sadly mostly useless nowadays
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➔ How to have both performances and data integrity 
assurance ?

➔ Need to trick with concepts like WAL
◆ Write-ahead Logging

➔ Imagine a database context
➔ You don’t want to lose data
➔ But transactions must be quick

◆ As quick as possible
➔ Transactions can be complex. They can impact your whole 

data
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➔ Likely, the database will be stored on disk on a file
➔ It can be huge, so a modification can introduce changes in 

quite some “random” places of the file
➔ Random access to different places of the file is expensive, in 

terms of I/O
➔ Writing the result after each transaction will take a lot of 

time
◆ potentially
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➔ Instead, WAL technique allow to deal with this exact 
behavior

➔ The WAL is a log file that will record each transactions, in 
the right order

➔ When a client makes a query:
◆ The transaction is written to the WAL
◆ We make sure the WAL is written to disk
◆ We perform the transaction, and return the value
◆ Later, the modified db file might be flushed out to disk
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➔ If the database server crashes badly, the WAL is still there
➔ All successful transactions might not have been flushed to 

disk
➔ The database engine will check its WAL, and assure that 

data is correct
➔ If not, it can correct it since it has all the information in the 

WAL
➔ Regularly the WAL is reseted with a checkpoint
➔ Writing to disk the WAL is less expensive since it’s 

append-only mode



NUMA nodes
Architecture comes to play
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➔ On some architecture, not all memory is on the same access 
level

➔ Especially on “big” servers where it’s not uncommon to have 
2 CPUS
◆ And 2 memory zones

➔ Instead of having Unified Memory Access, we now have Non 
Unified Memory Access

➔ Reaching memory in node 1 from CPU on node 0 is possible
◆ But more expensive
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➔ Linux is NUMA aware
➔ numactl --hardware
➔ cat /proc/cpuinfo ; cpuinfo
➔ The scheduler runs in best-effort by default
➔ If a task has been running in a NUMA node, it will try to keep 

it there
➔ Has some functions and data structure to perform its 

NUMA assignation
➔ https://elixir.bootlin.com/linux/latest/source/kernel/sched/

fair.c#L1439 

https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c#L1439
https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c#L1439
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➔ But this best-effort mode can actually be not good enough
➔ Especially in some cases where the machine is quite loaded
➔ It might actually sometimes be a good trade to force a task 

to run on a NUMA node
◆ Reducing its CPU & RAM capacities

➔ Good example: VMs on an hypervisor
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➔ Possibility to visualize NUMA memory allocation
➔ numastat

◆ Has even a per-process information
◆ /proc/<pid>/numa_maps

➔ Possibility to set a NUMA policy
◆ set_mempolicy(2)
◆ sched_setaffinity(2) also
◆ Or via cgroups



Sidenote: Pushing 
debug tools even 
further
Carcinization of debugging tools
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➔ strace(1) is considered a debugging tool
◆ syscall oriented

➔ gdb(1) remains the “true and only debugger”
◆ Or is it ?

➔ gdb(1) while having tons of functionalities lacks a critical 
component

➔ record & replay
➔ Mozilla introduces rr
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➔ The rr project is a debugger project built on top of GDB
➔ Not a replacement

◆ Allow you to keep using all the GDB features
◆ Not asking you to learn everything again

➔ rr works by recording your buggy software first
➔ Like strace(1), it will inspect closely what your program does
➔ Record it
➔ And provide a way to replay it, in the exact same context
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➔ Replaying the exact same session is very useful for a few 
reasons:
◆ No need to make the user interact the same way 

everytime
◆ Ability to catch a misfortune once and work on it

● Race conditions, thread problems, …
◆ Keep learned info in a debugging session across runs 

(pointer values, etc)
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Let’s check a quick example
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➔ rr was designed by Mozilla to debug firefox
➔ It’s able to debug complex software like firefox
➔ It has some limitations though

◆ Single core machine emulated
◆ x86 CPU
◆ some syscalls not tracked
◆ Can break on kernel update
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➔ rr when started records everything to replay the exact same 
session

➔ ptrace(2)
➔ seccomp(2)
➔ Because one of the thing rr tries to catch is race conditions 

between threads, it must be able to catch them
➔ rr runs all thread on the same CPU core to be sure to 

capture such events
◆ Impacts perf on heavily parallelized computation
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➔ To be able to run all threads efficiently on the same core and 
catch their output, rr is preemptive

➔ When a thread enters a syscall, ptrace(2) catches the syscall 
and hand is given back to rr

➔ rr also periodically preempts threads with signals
➔ It chooses which thread to run while trying to respect linux 

scheduler and its priorities
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➔ When a program do a syscall, rr catches it because of 
ptrace(2)

➔ It chooses to resume the syscall, but catches the return 
value
◆ Like strace(1)

➔ It stores the syscall interaction in a replayable format
➔ It works for most syscalls, but ptrace(2) itself
➔ A process can only be ptrace-d once

◆ And firefox and many other already use ptrace(2) on 
themselves
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➔ rr emulates ptrace(2) syscall to bring compatibility
➔ rr has to deal with complex situations

◆ Ioctl
◆ Namespaces
◆ …

➔ To replay a recorded trace, ptrace(2) is also used
➔ rr replaces all syscalls with breakpoints

◆ It moves past the breakpoint, and set the return value 
as recorded
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➔ Some syscalls are harder to replay
◆ mmap(2) - you need to have the same address
◆ execve(2) - you have memory mappings that can 

change (ASLR)
➔ rr has to trick or implement complex logic to properly 

emulate them
➔ Asynchronous events must also be handled

◆ Signals, interrupts
➔ They must be sent at the exact same time
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➔ rr is able to time precisely when async events occurs to 
replay them the same way

➔ It relies on x86 specific performance counters
➔ rr must also catch race conditions happening on shared 

memory
➔ As they describe, famous cases includes X server, 

pulseaudio, GPU related function and vdso
➔ They disable shared memory for X and pulseaudio and 

remove direct access for GPU
◆ Worse perfs, but ability to replay the bug
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➔ For VDSO, rr live-patches vdso in the tracee address space 
to replace VDSO calls to actual syscalls

➔ rr must also be able to catch non-deterministic CPU 
instructions

➔ RDTSC is caught via prctl(2)
➔ RDRAND is rarely used, it’s replaced manually in the few 

places found, but this is not caught by rr
➔ CPUID returns the core number, so sched_setaffinity(2) is 

used to force a core
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➔ For VDSO, rr live-patches vdso in the tracee address space to 
replace VDSO calls to actual syscalls

➔ rr must also be able to catch non-deterministic CPU 
instructions

➔ RDTSC is caught via prctl(2)
➔ RDRAND is rarely used, it’s replaced manually in the few places 

found, but this is not caught by rr
➔ CPUID returns the core number, so sched_setaffinity(2) is used 

to force a core
◆ These instructions might be handled differently is recent 

versions thanks to CPUID faulting
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➔ As a practical point of view, the trace created shall remain 
quite small

➔ It’s compressed (and decompressed) on-the-fly by rr
➔ Shared libraries and binaries are stored via hard links or cow 

mechanisms
➔ Because ptrace(2) introduces a context switch (from tracee 

to tracer and vice-versa), and because it’s used twice per 
syscall (before and after), it affects performances drastically
◆ But rr is clever
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➔ To avoid running to many ptrace(2), rr injects a library in 
each tracee

➔ The library overwrite syscalls wrappers
➔ The library performs the syscall, but write information to a 

shared buffer, shared with rr
➔ It tries to catch most frequently used syscalls this way

◆ But fallbacks to the ptrace(2) + syscall in other cases
➔ … there are many other challenges solved by rr

◆ Read there paper explaining most of them

https://arxiv.org/pdf/1705.05937.pdf
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➔ The master of engineering put in rr leads to a very practical 
tool

➔ The overhead it adds is about 20% on firefox
➔ If firefox takes 10min to perform a task, it will take 12min 

max with rr as observed
➔ All these elements make rr also very powerful with fuzzers



Memory 
overcommiting
Let’s go beyond limits
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➔ /proc/meminfo also has some metrics about virtual memory
➔ On linux, you can over-allocate

◆ vm.overcommit_memory + vm.overcommit_ratio
➔ An allocation in virtual memory != necessarily bound to 

physical memory
◆ It is if it’s used, meaning written to

➔ Useful because softwares tend to allocate more than they 
actually use
◆ That’s also a reason why you’ll unlikely see a negative 

answer from malloc(3)
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➔ 3 overcommitting modes possible:
◆ 0 -> heuristic, let the kernel decide (default)
◆ 1 -> always allow, never check
◆ 2 -> always check

➔ In /proc/meminfo:
◆ Committed_AS is the sum of all committed (allocated 

virtual memory for all processes)
◆ CommitLimit is the maximum amount of memory 

allocatable
● Makes sense in mode 2 only
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➔ Overcommitment lead to memory limit being hit before a 
memory allocation syscall fails

➔ Checking return value of malloc(3) won’t guarantee the 
memory is yours

➔ You will trigger the OOM-killer in fact
➔ Still check return value …
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➔ Other metrics are also available in:
◆ /proc/vmstat
◆ /proc/swap
◆ /proc/buddyinfo
◆ ….

➔ Also some per-process metrics
◆ /proc/<pid>/maps
◆ …



Can we pause a 
minute and finally 
explain /proc ?
A small dive in pseudofilesystems
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➔ A regular filesystem should be a well known notion
➔ A disk (HDD, SSD, …) is exposed as a block device on linux

◆ Special file, allows “raw” access to the disk
● Not quite, but let’s keep this definition

➔ To be used as one would expect (put directories, files, etc), a 
filesystem must be created on the disk

➔ A filesystem is a data layout specs
◆ A data structure
◆ And its driver
◆ Integrated in linux through abstraction interfaces



What is a filesystem?

170

➔ Different kinds of filesystems with different approaches, pros 
and cons
◆ FAT, EXT4, XFS, ZFS, BTRFS, NFS, NTFS, …
◆ Can be thought for the network (NFS, CEPHFS, GLUSTERFS, …)
◆ Can have built-in snapshot mechanisms
◆ Can have a journal
◆ Can support extended attributes
◆ Is more or less subject to fragmentation
◆ …
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➔ Once your disk is formatted with a filesystem, it can be used
➔ With windows, it’s directly accessible with a letter (C:, D:, ..)

◆ It’s simpler for them, but also kind of stupid
◆ No unified hierarchy
◆ What about letter conflicts ?

➔ In linux, you have only one hierarchy: the Virtual FileSystem



Linux VFS
One hierarchy to rule them all
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➔ On linux there is no disk drive letter, only “/”, the root
➔ Linux maintain internally the VFS, a unified file hierarchy
➔ You can put a disk filesystem somewhere in the VFS

◆ This operation is called mounting
➔ Everything under the mount point will be bound to the 

filesystem
◆ Read, writes, etc

➔ It’s common to have the root of the VFS mounted on a disk 
partition

➔ The VFS is what you can see when “exploring files” on linux
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➔ The VFS is the concept that allows having multiple physical 
storage support under the same hierarchy

➔ It allows an abstraction of the actual operations performed 
to the user
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➔ The linux VFS is tightly tied to the concept of UNIX filesystem
➔ It was indeed built on top of the ext2 filesystem
➔ A UNIX filesystem in short is built with 4 concepts:

◆ Files
◆ Directory entries
◆ Inodes
◆ Mount points
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➔ If you want to access your USB key for example, you need:
◆ To have a filesystem created on your disk, or on a 

partition
● The filesystem needs to be compatible with your OS

◆ To mount this filesystem somewhere in your VFS
● If it’s just to access its files, you should put it 

somewhere it doesn’t impact your system, like /mnt



Linux VFS - mount

177

➔ To mount a filesystem in the VFS, one can use mount(1)
➔ This command (and its underlying syscall) will take a source 

device, and add it in the VFS at some path
◆ This means that everything that used to be on this path 

and below isn’t directly accessible anymore
● It is still accessible by tricking
● Opened files stay open, and modification are 

propagated 
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➔ The source device is usually a block device (a hard drive), but 
it can also be something else, like:
◆ A network address, when mounting a NFS partition for 

example (or glusterfs, cephfs, etc)
◆ A special kind of source known as a pseudo-filesystem

➔ You can check the supported filesystem in /proc/filesystem
◆ Filesystem marked with “nodev” means that they don’t 

need a block device



Pseudo filesystem
Some filesystems are not like the others
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➔ A filesystem is usually meant to store and access files
➔ But in Unix philosophy, everything is considered a file, even if 

it’s not truly is one
➔ For example, you might know the special file /dev/zero or 

/dev/null
➔ There is no such infinite file on your disk than you can read 

forever, or write to without it being actually written
➔ This is an interface the kernel exposes you
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➔ When doing a open() syscall, the kernel will do a few things 
like checking the path, permissions, etc …

➔ Then it will dispatch the syscall to the driver responsible for 
the file
◆ If the file is on an ext4 partition for example, we need to 

run code specific to ext4 data structure (which is in the 
end what a filesystem is)
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➔ We could come up with a special filesystem driver, that will 
execute functions for us depending on the file we read/write

➔ For example, a file that will execute this function when read:

This is obviously pseudo-code 
and not the actual linux 
implem of /dev/zero



Pseudo filesystem

183

➔ We can go a bit further, and imagine this as a whole interface
➔ For example, /proc
➔ It’s a pseudo filesystem mounted in /proc called procfs
➔ procfs exposes information about processes and various 

other runtime information
◆ meminfo, filesystems supported, etc

➔ When reading a file there, you actually run kernel code that 
generates a response for you

➔ There is no disk space taken, only RAM for the responsible 
kernel code
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➔ procfs goal is quite easy to understand, and is mostly 
read-only to return kernel runtime values

➔ But we can have other filesystems a bit more complex
➔ procfs for example which role is to expose current kernel 

parameters and settings for many things (memory, network, 
etc).
◆ They can be read, but also written to, to dynamically 

change the kernel behaviour
◆ You can for example disable IPv6, drop memory caches, 

etc ….
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➔ procfs is more or less the config interface for the kernel, with 
the command line

➔ Regularly used with sysctl(1) binary
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➔ tmpfs is a very useful pseudofilesystem
➔ Everything inside is stored in RAM

◆ Very fast accesses
◆ volatile , reboot = data gone
◆ Usually mounted at least in /tmp

➔ When mounting this pseudofilesystem, size argument used 
to give the maximum size
◆ Defaults to half the RAM
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➔ devtmpfs is also a well known pseudo filesystem expected to 
be mounted on all platforms, on /dev

➔ It’s a bit special, being a tmpfs, another pseudofilesystem, 
but with special behaviour

➔ It differ from tmpfs by having automatically linux driver 
register block devices they create in the filesystem

➔ /dev – or devtmpfs – contains a block and chardevices:
◆ Your disks – and their partition(s) if any
◆ Special files like zero, null, urandom, kmsg …
◆ Your tty(s)
◆ ….
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➔ Another pseudofilesystem you might have encountered 
already is the cgroups (v1 or v2) fs

➔ Interface to manipulate the control groups
➔ Use extensively by systemd, docker, etc …
➔ Let’s not get into too many details here



Understanding VFS 
structure
Will be useful to understand some 
metrics and do advanced monitoring
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➔ The linux VFS is tightly tied to the concept of UNIX filesystem
➔ It was indeed built on top of the ext2 filesystem
➔ A UNIX filesystem in short is built with 4 concepts:

◆ Files
◆ Directory entries
◆ Inodes
◆ Mount points
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➔ The UNIX filesystem build those 4 representations this way:
◆ File

● A file is a set of bytes, and doesn’t contain metadata
● A directory is a special kind of file that lists its 

content
◆ Inode

● An inode represents the metadata of a file. It has a 
unique number in a given filesystem

◆ Mount points - or superblock
● Contains metadata information for the whole fs
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➔ The UNIX filesystem build those 4 representations this way:
◆ Dentry

● Directory Entry
● Represents the components of a path
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➔ The VFS will be built on those 4 unix concepts
➔ Any filesystem not implementing a concept listed above will 

have to provide a compatibility layer
◆ The driver will have to create one of those concept 

on-the-fly
◆ With some (usually) negligible overhead

➔ Those are requirements for the VFS
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➔ The VFS is the abstract representation exposed to the user, 
more or less indirectly

➔ It needs to be abstract and compatible with any “backend”
➔ Which means its structure must be able to interact with any 

actual filesystem implementation
◆ For pseudo-filesystems implemented in linux, it’s trivial, 

but for external ones, harder
➔ The VFS can be complicated with many mounts, filesystems 

mounted in multiple places, etc
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➔ The UNIX filesystem concept of a superblock is mapped to a 
struct super_block in the VFS

➔ https://elixir.bootlin.com/linux/latest/source/include/linux/fs
.h#L1451

➔ This struct contains information about a mount point
➔ It contains a struct super_operations that will provide 

functions to filesystem-specific pointers for the 
filesystem-specific operations
◆ https://elixir.bootlin.com/linux/latest/source/include/lin

ux/fs.h#L2222

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L1451
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L1451
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2222
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2222
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➔ The super_block is usually a mapping to the filesystem’s 
control block of superblock, stored on the disk for regular 
filesystems
◆ The metadata information for a filesystem
◆ How many files, its size, …
◆ Generated on-the-fly for pseudo-filesystems

➔ Contains also run-time information for the mount-point
◆ Is frozen ? Is dirty ? Mount flags, …

● Frozen = block write operation on a fs
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➔ Its operations struct will allow operations of the super_block 
itself
◆ Sync to the disk, remount, freeze, get statistics, …

➔ But also on the inodes it handles
◆ Create, delete, dirty, …

➔ Having the super_operations allows genericity in the 
manipulation of super_block object, but filesystem-specific 
implementations of such operations
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➔ Implemented in the VFS as the struct inode
◆ https://elixir.bootlin.com/linux/latest/source/include/lin

ux/fs.h#L593
➔ Also contains a struct for an inode’s operation

◆ include/linux/fs.h - Bootlin
➔ This struct contains information about an inode (file 

metadata)
➔ The inode content is written on the disk but the struct is 

generated when the file is accessed

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L593
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L593
https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L2137
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➔ Since an inode is generic for all files, and in UNIX everything is 
a file, struct inode contains a union for specific files
◆ i_pipe, i_bdev, i_cdev

➔ An inode contains quite some fields that can be omitted in a 
driver implementation
◆ For example i_atime

➔ Operations includes:
◆ create, mkdir, mknod, symlink, permissions, …

➔ No read, write ! 
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➔ It is important to distinguish a file from the UNIX filesystem 
concept to the struct file, aka the VFS file concept

➔ A UNIX file is what people usually understand by a file
◆ Without the metadata

➔ A struct file represents a per-process file interaction
➔ A struct file is what process usually interact with

◆ Especially a file.f_op
➔ include/linux/fs.h - Bootlin

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h#L940
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➔ A struct file is created by open(2)
➔ A process can have multiple struct files pointing to the same 

UNIX file, the same inode
➔ The struct inode it however unique
➔ Its operations are all the operations you think about when 

thinking about file manipulation from a process
◆ read, write, llseek, ioctl, mmap, …
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➔ The difference between the kernel and users for files are how 
there are identified

➔ A user (usually) identifies a file by its path
◆ open(2) syscall for example

➔ The kernel by an inode number
◆ The path is used to translate to this inode concept
◆ The same file (same inode) can have multiple paths for 

example
➔ A file is a generic term and can have multiple types, including 

being a directory
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➔ Each component of a path is decomposed in objects called 
dentry

➔ /bin/bash is .. 3 dentry objects
◆ /, bin and bash
◆ The first 2 are dentry representing a directory, the latest 

is a regular file
➔ A dentry object is a VFS specific object. There’s no direct 

information about underlying object pointed by it
➔ struct dentry

https://elixir.bootlin.com/linux/v5.19.12/source/include/linux/dcache.h#L81
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➔ The role of the dentry object is to ease the user manipulation 
of file and directories

➔ Those operations are costly
◆ String manipulation
◆ Need to check if valid
◆ Check its subcomponents
◆ …

➔ The dentry object is really meant to represent a path
➔ A mount point, a directory, a file will have a struct dentry

◆ When needed



The VFS structure - dentry

205
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➔ The dentry object is really meant to represent a path
➔ A mount point, a directory, a file will have a struct dentry
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➔ A dentry can be positive or negative
◆ A positive ones means it has an inode associated to it
◆ A negative one is the opposite

➔ A negative dentry (because the path is wrong for example) 
can be kept in cache to resolve queries quicker

➔ A dentry can also be considered as used or unused via 
d_count
◆ d_count counts the number of active reference to the 

associated inode
● Meaning if there are active users of the object
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➔ All those presented mechanisms lead to an obvious design:
dcache

➔ dcache is a cache mechanism to store, access and remove 
dentry objects to have quicker accesses to files

➔ dcache keeps track of dentry objects, in both active (used) 
state, and inactive (unused but valid) and negative state 
(invalid)

➔ It provides a hash table to have quick access
◆ d_lookup()
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➔ The struct dentry also contains an operation struct
◆ https://elixir.bootlin.com/linux/v6.0.7/source/include/lin

ux/dcache.h#L127
➔ The operations of a dentry includes:

◆ revalidate, hash, compare, …

https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/dcache.h#L127
https://elixir.bootlin.com/linux/v6.0.7/source/include/linux/dcache.h#L127
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➔ All structs 
pointed by 
struct dentry
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➔ All structs 
pointed by 
struct dentry
◆ With 

“useless” 
structs 
removed
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➔ All structs from 
struct dentry in 
a 2 elements 
range
◆ With 

“useless” 
structs
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➔ All structs from 
struct dentry in 
a 2 elements 
range
◆ With 

“useless” 
structs 
removed
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➔ For fun: All 
structs from 
struct dentry in 
a 10 elements 
range
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➔ For fun: All 
structs from 
struct dentry in 
a 50 elements 
range



VFS observability
How can we observe what is going on 
with the VFS ?
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➔ The main interface is /proc/sys/fs
➔ We have for example dentry-state

◆ Exposes the content of dentry_stat_t
◆ https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.

c#L118
➔ file-max

◆ https://elixir.bootlin.com/linux/v6.0.7/source/include/ua
pi/linux/fs.h#L97

➔ A few other interfaces, but yet limited

https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.c#L118
https://elixir.bootlin.com/linux/v6.0.7/source/fs/dcache.c#L118
https://elixir.bootlin.com/linux/v6.0.7/source/include/uapi/linux/fs.h#L97
https://elixir.bootlin.com/linux/v6.0.7/source/include/uapi/linux/fs.h#L97
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➔ The VFS is hardly observable, and actually matters less than 
actual filesystem underneath

➔ Syscall to get some information about a filesystem: statfs(2)
◆ Actually the recommended glibc wrapper in statvfs(3)

➔ Hardly any other interfaces for filesystems :/
➔ What is to be observed would mostly be I/O on actual 

physical devices
➔ It is frustrating because there are quite some structs, 

operations going on
◆ But no interfaces …



eBPF
Let’s talk about the elephant in the 
room
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➔ Most of this course has been focusing on two things:
◆ Understanding linux kernel mechanisms
◆ Understanding how to observe them

● And observability in general
➔ For the past years, a fancy term appeared and is mentioned 

frequently
◆ Everytime one talk about linux and observability in the 

same sentence
◆ On lots of cool, modern and alpha projects
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➔ eBPF is relatively new feature added to linux “recently”
➔ It is actually an extension of a feature existing in the kernel 

for years: BPF
◆ Berkeley Packet Filter

● Berkeley being the same as in Berkeley sockets or 
BSD

◆ Now it’s extended BPF
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➔ eBPF is a newer and more powerful BPF
◆ But what is BPF already ?

➔ BPF is an old project that has its roots in BSD
➔ It’s from the early 1990
➔ It has been integrated in Linux in the beginning of the 2000’s

◆ Around linux 2.5
➔ It has since been evolving gradually to become what is know 

known as eBPF
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➔ BPF until the 2010’s had a simple purpose: filter network 
paquets

➔ It comes with a virtual machine running in kernel land
➔ It executes BPF scripts

◆ BPF scripts are small programs with special instructions
◆ It’s not x86 (or else) instructions directly

➔ Scripts are limited
➔ Used by tcpdump for example
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➔ Executing code dynamically in the kernel in a virtual machine 
looks very interesting

➔ One could want to execute more than just packet filtering
➔ Maybe report information about the packets to userland ?
➔ Maybe include some packet manipulation ?

◆ Even dropping them ?
➔ Etc …
➔ As ideas came along, BPF subsystem grew
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➔ The virtual machine idea looked seducing
➔ A JIT was introduced to compile BPF instruction to x86 

instructions
◆ So it was fast

➔ BPF had too many limitations, like the number of registers 
available (2), no 64 bits registers, …

➔ 2 BPFs were created: classic BPF and internal BPF
➔ Internal BPF was more powerful, but was hidden from 

userspace
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➔ The only interface was for classic BPF
➔ Classic BPF was then transformed in internal BPF in the 

kernel
◆ Faster, using x86 instructions directly, …

➔ But the idea of exposing an interface for internal BPF to 
userland was already there

➔ The goal was also to work on GCC/LLVM to generate internal 
BPF directly 

➔ Internal BPF was also able to call some limited set of kernel 
functions



From BPF to eBPF: internal BPF

229

➔ Internal BPF was also starting to draw attention for tracing
➔ Could be useful to use this dynamic language and virtual 

machine to run more things dynamically
◆ No more real connection with the network

➔ BPF moved from the net/ to kernel/bpf
◆ Removed also some ties with network as well

➔ This internal BPF was then renamed as eBPF for extended 
BPF
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➔ What happened after ?
➔ bpf(2) syscall was introduced
➔ Load a BPF program in the kernel
➔ Of course, huge restrictions:

◆ We can’t run arbitrary code in the kernel
◆ We can’t call any function
◆ We can’t have a loop
◆ We can’t sleep
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➔ The introduction of the bpf(2) syscall also introduce a BPF 
verifier:
◆ Tries to prevent harmful programs from being loaded
◆ Things mentioned on the previous slide
◆ But also read from unallocated registers, bound checks, 

etc
➔ Obviously a privileged syscall requiring CAP_SYS_ADMIN 

(until 5.8 when CAP_BPF was added)
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➔ Added feature to eBPF at that time was also maps
➔ eBPF maps are key/value store to exchange data from kernel 

to userland
◆ They are created from userland though

● Via a call to bpf(2) too
● But not directly from a running eBPF program
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➔ eBPF evolutions since 2014
◆ Adding persistent eBPF programs
◆ Adding a pseudo filesystem for eBPF (called bpf)
◆ Adding different types of eBPF programs

● Few related to network traffic
● One to change socket(2) types
● Few related to monitoring

◆ Adding types of maps
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➔ Adding support to authz sysctl via eBPF
➔ Ability to dump kernel structures
➔ Allow sleepable eBPF programs
➔ Ability to call some restricted kernel functions
➔ Control scheduler decisions
➔ Allow to loop (with still quite some restrictions)
➔ ….



Running eBPF
How can one create and run such 
magical programs ?
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➔ An eBPF program is setup in the kernel via bpf(2)
➔ It is checked, verified and then installed
➔ It can be referenced via an ID
➔ But a call to bpf(2) doesn’t run the program
➔ An ePBF program doesn’t run when userland asks for it to 

run
➔ An eBPF program is linked to an event, and is started from 

this event
◆ Like classic BPF, when a socket receives data for 

example
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➔ All interactions with (e)bpf goes through the bpf(2) syscall
➔ The design intended to have only a single syscall for all 

operations
◆ Like ioctl(2)

➔ First argument is the cmd:
◆ Create, read elem, update elem, delete elem for maps
◆ Load a eBPF program
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➔ A map to create must also have a type
◆ BPF_MAP_TYPE_HASH
◆ BPF_MAP_TYPE_ARRAY
◆ BPF_MAP_TYPE_STACK_TRACE
◆ …

➔ All map types don’t behave the same way
➔ Read the documentation for specifics
➔ Same goes for eBPF programs

◆ Different types for different usages
◆ Changes in the verifier and capacities of your program



“ Ok but why the fuss 
around eBPF ?
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eBPF in action
Checkout why eBPF rhymes with 
observability
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➔ eBPF is great because it adds dynamicity to the kernel
◆ Could be seen as the equivalent of javascript, but for the 

kernel
➔ There’s no intention of putting cats animation in the kernel 

though
➔ But instrumentality and observability is another subject
➔ Let’s discover a few eBPF project
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➔ Netdata kernel collector
◆ Collects metrics and allow monitoring on events that 

were inaccessible so far
◆ Process-related, VFS, hardirqs, softirqs, shmem, 

sync-related syscalls, file access, mount, 
network-related, TCP-related internal functions calls, …
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➔ iovisor/bcc
◆ Toolkit to manipulate eBPF easily: write eBPF programs 

in C-like language and compiled with LLVM, front-end for 
eBPF programs with python or lua

◆ Comes with pre-defined tools to monitor, trace, snoop a 
machine
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➔ Cilium
◆ Kubernetes-related projects for network
◆ CNI to bring eBPF-aware networking to Kubernetes 

with:
● Loadbalancing
● Network policy L7 aware
● …

◆ Hubble for observability in Kubernetes networking 
related stack
● Metrics, tracing
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➔ Check a bigger, updated and more detailed list on 
https://ebpf.io/applications/

➔ Those projects look awesome and very promising
➔ The ability to expose metrics un-exposable otherwise is 

astonishing
➔ But how exactly is this possible ?

◆ Let’s stop with the vagueness around observability and 
eBPF and let’s dig into implementation details

https://ebpf.io/applications/


kprobes, uprobes, 
tracepoints, …
They were there all along !
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➔ Before “modern” monitoring like eBPF allow us to do, there 
were already concepts in the kernel to get events
◆ From the early 2000’s

➔ It was mostly for instrumentation and debugging than 
observability

➔ Mostly aimed for kernel developers at first
➔ Then brought to more people



Probes and tracepoints

249

➔ There are 2 categories of event source in the kernel
◆ Dynamically defined tracing points (Probes)
◆ Statically defined tracing points (Tracepoints)

➔ Linux offers:
◆ Tracepoints
◆ Kprobes

➔ But also for userland:
◆ Uprobes
◆ (USDT)
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➔ Probes and Tracepoints are to collect “data”
➔ The way there are used, called and how the data is then 

exposed depends on the tracing framework
➔ eBPF is, among other things, a tracing framework
➔ iovisor/bcc presented briefly is a front-end
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➔ What is the difference between kprobes and tracepoints ?
➔ Tracepoints are defined statically

◆ TRACE_EVENT macro in the kernel
➔ They had no overhead if disabled

◆ Except for a small comparison
➔ Once enabled, notify with info observers
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➔ What is the difference between kprobes and tracepoints ?
➔ kprobes are defined dynamically
➔ They don’t require a “kprobe” event to be defined in the code
➔ You can compare it to a breakpoint with your debugger
➔ You can place it almost everywhere

◆ Beginning and end of functions via k(ret)probe
➔ It replaces an instruction to be executed by an INT3
➔ The kprobe handler will check from where the trap comes 

from
➔ It will then report what is needed to the kprobe subscriber(s)



Tracing framework
A probe on its own is hardly usable
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➔ Probes and tracepoints reports data to a subscriber
➔ The subscriber is defined by the tracing framework used
➔ One example: eBPF
➔ eBPF allow you to define a small program and attach it to a 

probe/tracepoint
➔ Once the probe is fired, it calls your eBPF program

◆ Argument to the probes are forwarded to your program
◆ You can sometimes instrument them
◆ Or do some logic and report things
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➔ Only a limited amount of tracing frameworks are available in 
linux

➔ eBPF, ftrace and perf_event are the 3 main choices
◆ There are also out-of-tree options (SystemTap, lttng, …)
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perf_event
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eBPF
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Frontends
Let’s build some fancy tool on top of 
these
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➔ There are multiple frontends options for each framework
➔ The frontend usually is meant to leverage the framework 

easily
➔ Write human-readable code, and compile it in eBPF bytecode 

for example
➔ Provide awk-like scripts
➔ Essentially a simplification of the interfaces and syscalls

◆ Sometimes shipped with a library in a given language
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➔ Quite some frontends can be named:
◆ Perf (for perf framework and ftrace)
◆ trace-cmd
◆ Bcc
◆ Bpftrace
◆ LTTng
◆ SystemTap
◆
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nsswitch digression
Understanding glibc behavior as seen by 
strace(1)
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➔ Unix world offers a few files to handle its system 
configuration

➔ Examples of those includes /etc/passwd, /etc/group, 
/etc/hosts, …

➔ While those files works great and suit basic behavior, there 
are still a bit limited

➔ What if we wanted to handle servers’ access for the 
employees of a company ?
◆ There are hundreds of employees, thousands of systems
◆ Handling each system individually is difficult and tedious
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➔ How can we extend this behavior to use other kind of 
services in order to provide those information ?

➔ For example, connect to a database to get user information
◆ LDAP is a famous protocol for this

➔ How to handle a DNS system a bit more clever than a simple 
/etc/hosts + /etc/resolv.conf ?
◆ With cache
◆ With per-interface domain resolution for example
◆ …
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➔ GNU C Library allow us to extend and change the default 
behavior via a configuration file, /etc/nsswitch.conf

➔ nsswitch, for Name Service Switch in part of the glibc
◆ And also introduced in other software due to its 

popularity
➔ The /etc/nsswitch.conf allow to change the configuration on 

how to find such Name Service information
➔ It has a pluggable approach, with shared libraries

◆ Anyone can write a plugin to plug in the nsswitch system
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➔ Default /etc/nsswitch.conf contains the basic configuration 
to use the default plugins for traditional UNIX config files
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➔ Default /etc/nsswitch.conf contains the basic configuration to 
use the default plugins for traditional UNIX config files

➔ It has a simple format:
◆ Name service: <plugin 1> <plugin 2> …

● There are some limited option to add on each plugin 
also

➔ Let’s check a few classic configurations 
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➔ passwd: files systemd ldap
➔ For the passwd name service, first is to check with the files 

plugin
➔ The files plugin is implemented via /usr/lib/libnss_files.so.2
➔ It implements the default UNIX behavior, by looking in 

/etc/passwd
➔ The next data source is implemented by libnss_systemd.so.2

◆ It implements a connector to ask systemd(1) or some 
specific systemd service via a systemd API information

◆ nss-systemd(8)
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➔ passwd: files systemd ldap
➔ ldap is provided by nslcd and its libnss_ldap.so.2
➔ Used to query nslcd daemon which connect to remote 

configurable LDAP server and gets users, passwords and 
groups from

➔ Because of the multiple ways of finding passwd information 
(different name services), cat /etc/passwd is not enough

➔ Prefer using getent passwd



nscd digression
Understanding glibc behavior as seen by 
strace(1)
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➔ On top of described behavior by nsswitch and glibc, another 
mechanism exists to provide cache for name service queries

➔ While /etc/passwd file for example is pretty much 
inexpensive to read, DNS queries or LDAP connection are 
expensive

➔ Having cache for them is great
➔ It’s the role of nscd to provide such cache

◆ Hence its name, Name Service Cache Daemon



nscd

276

➔ nscd as its name indicates is a daemon
◆ It might not be installed on your machine, or not running

➔ It exposes a UNIX socket in /var/run/nscd/socket
➔ By default, the glibc connects to this socket automatically

◆ Before contacting a name service source as provided by 
/etc/nsswitch.conf

➔ If the socket can’t be opened, it … retries a second time
➔ If nscd is not running, or doesn’t have the info in cache, it falls 

back to the default nsswitch mechanism
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➔ In previous example
➔ nscd is answering
➔ Answers with a pointer to a shared memory to mount, that 

contains the asked database
➔ mmap(2) right under
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Thanks !
Questions ?
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