
DevOps,
Docker and Gitlab-CI
Part 1: DevOps

-- Cyril zarak Duval, root CRI/ACU 2020

Version 1.1.0 (2023-02-15)

Introduction
Generic information about the course

Why should you listen to the course ?

➔ Being able to code is nice, without the production is
useless

➔ State of the art notions
➔ Having the rights tools makes you more proficient
➔ Subject somewhat difficult
➔ Getting a decent grade

3

Who am I ?

➔ Why this slide ?
◆ To understand my profile and my point of view

➔ EPITA 2020 - CRI/root ACU
◆ ~6 years of real DevOps experience
◆ I know EPITA and students’ POV

➔ “DevOps engineer” title, in fact more SRE / Ops oriented
◆ Not a dev

4

Plan

1. DevOps concepts
2. DevOps tools

a. YAML
b. Docker
c. Docker-compose
d. Gitlab-CI

3. Observability

5

What is DevOps ?
Surprisingly, it’s both Dev and Ops

DevOps

7

➔ Contraction of Development and Operations
➔ Development:

◆ Creating code, applications, …
◆ A will to introduce changes
◆ Work env: your laptop, your IDE

➔ Operations:
◆ Ensuring services are working and available (including

aforementioned applications)
◆ A will to not break anything (somewhat reluctant to

change)
◆ Work env: servers/VMs, a text editor and ssh

DevOps

8

➔ DevOps is a set of tools and practices
➔ Aim to reduce – even remove – friction between Devs and

Ops
➔ Devs are doing a bit of Ops
➔ Ops are doing a bit of Dev
➔ DevOps is not really a job per-se
➔ Some DevOps tools are so popular they became new

standards

Devs and
Ops
relation

9

DevOps
scope

10

What issues are
solved by DevOps?
Why is everyone so psyched by DevOps ?

DevOps - Dev POV

12

➔ Devs work on their laptop
◆ Their OS
◆ Their libraries
◆ Their environment
◆ Their hardware specs
◆ Their network stack
◆ …

➔ How to ship that to production servers seamlessly ?
➔ What are the meaningful differences ?

DevOps - Dev POV

13

➔ How does a Dev introduce architectural changes ?
➔ How to add a new dependency ?
➔ How to avoid “but it worked on my laptop :’(“ ?

But also …
➔ How to reduce time-to-market ?
➔ How to easily understand years of dev without you ?
➔ How to work with coworkers ?

◆ That will be different from you

DevOps - Ops POV

14

➔ How to deploy Dev’s application ?
➔ How to make sure it’s working well ?
➔ How to know what the dependencies are ?
➔ How to upgrade things without breaking anything ?
➔ How to avoid differences between prod and dev env ?
➔ How to handle config/secrets ?
➔ How to easily understand years of ops without you ?
➔ How to work with coworkers ?

◆ That will be different from you

DevOps - Solutions

15

➔ Devs must have some knowledge on how things are
deployed

➔ Devs should have some control on ops side
◆ Limited, scoped, supervised …
◆ They aren’t ops
◆ Control should be application-oriented

➔ Ops should be involved in the dev process
◆ Not necessarily by coding directly
◆ Focus on dependencies

How does DevOps
solve those issues?
Surely, it isn’t magic

DevOps - Concepts

17

➔ Devops concepts are built around “12 factors”
➔ Goals of those 12 factors:

◆ Be as declarative as possible
◆ Understand interactions between app and system
◆ No divergence between dev and prod
◆ Try to be platform agnostic
◆ Be able to scale up/down

DevOps - 12 factors - focus

18

➔ I. Codebase
◆ One codebase tracked in revision control, many deploys

➔ II. Dependencies
◆ Explicitly declare and isolate dependencies

➔ III. Config
◆ Store config in the environment

➔ VII. Port binding
◆ Export services via port binding

➔ X. Dev/prod parity
◆ Keep development, staging, and production as similar as

possible

DevOps - Practical aspect

19

➔ I2 factors is not the magical solution to everything
◆ It gives good advices
◆ Generic concepts

➔ DevOps is about mentality and tools
◆ Let’s look at the tools to understand the mentality

Let’s talk about
configuration
Let me introduce you to a new job:
YAML engineer

Configuration

21

➔ Article 3 of the 12 factors
◆ strict separation of config from code

➔ What does it means ?
➔ Softwares must not include configuration within the code
➔ Configuration shall not even be in the code VCS

◆ But could and should be stored in another VCS
● Be careful not to store any secrets in plaintext in a

VCS however
➔ Configuration will be different between dev, staging and

prod(s)

What is configuration ?

22

➔ What is configuration ?
◆ Everything removing genericity
◆ Everything that can change from an env to another

➔ Examples:
◆ Address of the database
◆ IP/port to bind to
◆ Log-level
◆ Path(s) to store data
◆ ….

How to provide config ?

23

➔ How to provide configuration ?
◆ env variables

● Recommended for simple cases, but limited
● Only Key-Value

◆ Config files
● A bit more complex to setup/provide but advanced
● Allow lists, mapping, etc

➔ How to write a config file ?
➔ Introducing to the most well known format in DevOps:

YAML

YAML

24

➔ YAML = Yet Another Markup Language
➔ Used for Docker-compose, Gitlab-CI, Kubernetes, Helm

charts, Ansible, Elasticsearch, Argo, Harbor, …..
➔ A superset of JSON to make it more human readable

◆ Meaning that JSON is valid YAML
◆ Even small JSON snippets embedded within a YAML file

➔ .yml or .yaml extension
➔ Libs in every language to parse it

YAML - the simple way

25

➔ YAML is a key-value format
➔ key is a string, value can be :

◆ string
◆ int
◆ boolean
◆ list
◆ mapping

➔ Indentation is important
➔ Quoting can be used

YAML -
the simple
way

26

YAML -
Advanced
features

27

28

YAML - tools

29

➔ yq is a useful tool to parse yaml in bash
➔ yamllint detects linting errors, inconsistencies and warn you

about possible misuage

YAML - pitfalls

30

➔ YAML by its nature can mislead users
➔ Here are some points to be careful on:

◆ JSON being valid YAML syntax
◆ Strings can be unquotted

● Be careful with numbers
◆ The Norway problem

● Case insensitive booleans in [Yes, True, On, Y]
◆ Indentation
◆ Mixup of “complex” types (mapping of lists of mappings,

…)

YAML - some help

31

➔ https://docs.ansible.com/ansible/latest/reference_appendi
ces/YAMLSyntax.html

Thanks !
Questions ?

32

Slides available on zarak.fr/

Contact: cyril@cri.epita.fr
zarak production#5492

33

