
DevOps,
Docker and Gitlab-CI
Part 2: Docker

-- Cyril zarak Duval, root CRI/ACU 2020

Version 1.1.0 (2023-02-15)



Docker with an 
example
Let’s have a look first at the top level



Quick docker overlook

3

➔ I want to run a webserver quickly
➔ I don’t really know in details any
➔ I don’t want to mess with the things installed on my computer

◆ Libraries, general packages …
➔ I just need it for some time and then forget about it
➔ Maybe I’ll need it again in some months

With docker

https://asciinema.org/a/484825


What are Docker and 
containers ?
Let’s try to understand with more or less 
details



What is Docker ?

5

➔ Docker is a container engine
➔ It allows you to:

◆ Create images
◆ Start containers from those images
◆ Manage containers
◆ Exchange images



What are containers and images ?

6

➔ A container is “kinda” like a virtual machine
➔ A container is not a universal definition

◆ We’re talking about linux containers in this course
➔ A container is essentially a process (and its sub-processes if 

any) which is isolated
➔ A container is ephemeral by design
➔ An image (in docker/OCI) is the source of a container

◆ From an image you can create multiple containers
◆ Each container is created from an image
◆ See the relation like class/object in OOP



Container vs VM

7

➔ VM uses CPU mechanisms (+ bits of hypervisor)
➔ VM needs its own kernel
➔ VM can be of different architecture (x86, ARM, RISC-V, …)

◆ Virtualization, paravirtualization, emulation
➔ Host (hypervisor) doesn’t have much access in the VM

◆ i.e. can’t see natively its process, load, etc
➔ Container is simply a linux process isolated with kernel 

mechanisms
➔ Host has full access on the container



Container vs VM

8

➔ VM needs to be setup with RAM amount, CPU count, disk, etc
➔ Container is a process. You can limit resources but not 

mandatory
➔ Containers are lighter:

◆ No kernel
◆ Faster to start
◆ Can even run without an OS

➔ Containers are less secure
➔ Containers can’t run everything (i.e. no windows on linux)
➔ Containers are ephemeral by nature



Container vs regular process

9

➔ What makes a process a container ?
➔ Isolation of:

◆ Filesystem
◆ Other running processes
◆ Users
◆ And also: network, mountpoints, UTS (hostname), …

➔ Can also have limitations (CPU, memory, etc)
➔ No clear way of identification

◆ No “container id” or anything provided by the kernel



Why do even need 
containers ?
Don’ t only take my word, but there are 
useful



Why do we use containers ?

11

➔ Control your OS (it’s in the image)
◆ No dependency issue from a laptop to a server: 

everything is in the image
◆ Can have multiple libs in parallel (in different images)

➔ Common interface to build and run applications
➔ Share easily the images 

◆ The app and all its dependencies
➔ Version control
➔ Isolation



Why do we use containers ?

12

➔ Cheap
◆ Quick to build
◆ Quick to start
◆ No overhead (unlike VMs)

➔ No difference between your laptop, dev server and prod 
server

➔ Follow the 12 factors principles 



How does Docker 
work ?
Let’s have a look at the daemon and the 
CLI



How does Docker work ?

14

➔ Docker works with a daemon: dockerd
➔ dockerd manages everything
➔ The user can contact dockerd in multiple ways

◆ UNIX socket, TCP, …
➔ Most people use the Docker CLI client, the command docker
➔ The docker command will contact the docker daemon to 

execute the user inputed command



How does Docker work ?

15

➔ The Docker daemon manages running, stopped containers, 
but also images, volumes, etc…

➔ If the daemon is not running, or you don’t have the 
permissions to contact it, you might get some error like

➔ Got permission denied while trying to connect to the Docker daemon socket 
at unix:///var/run/docker.sock: Get 
"http://%2Fvar%2Frun%2Fdocker.sock/v1.24/containers/json": dial unix 
/var/run/docker.sock: connect: permission denied



Let’s get started with 
docker
Creating containers



Docker CLI - run containers

17

➔ To run a container with docker, we use docker run
➔ To check for running containers, we use docker ps
➔ Let’s check docker common operations with containers:

◆ pull, start, stop, ps, image ls, exec

https://asciinema.org/a/489561


How to build docker 
images ?
Stop using and start creating



What is a docker image ? 

19

➔ We said that docker containers are created from docker image
➔ Like an instance from a class, an object and a template
➔ What defines an image then ?
➔ What’s inside an image ?



What is a docker image ? 

20

➔ A docker image is essentially a combination of a few things:
◆ A filesystem

● The “main” binary of the image
● Its libraries, essential files, …
● Some other binaries

○ Dependencies
○ Utilities

● All sets of files deemed worthy of being shipped in 
the image



What is a docker image ? 

21

➔ A docker image is essentially a combination of a few things:
◆ A filesystem
◆ Some metadatas :

● How it was built
● What commands to run by default
● Some environment variable to set
● …



Dockerfile

22

➔ Docker images are built with a Dockerfile*
➔ It’s a recipe-like config file
➔ It has multiple kind of instructions

◆ FROM selects the docker image to start from
◆ RUN let you run arbitrary shell commands
◆ …

● More details to come with the practicum

* there are other ways not to be mentioned in this course



Dockerfile

23

➔ A Dockerfile starts by a source docker image
◆ FROM instruction

➔ Let’s say you want to create an image based on debian
◆ FROM debian:11

➔ Everything from the image stated in FROM will be imported
➔ The rest of the commands will create another image on top of 

the initial FROM



Dockerfile

24

➔ Each instruction will perform some modifications on the 
image
◆ Add a file
◆ Run a command
◆ Set some variable
◆ ….

➔ Once they are all successfully executed, a new image is built



Image, tags, repository

25

➔ A docker image is defined by a hash (sha256)
➔ But it’s not convenient for most people
➔ So a name can be set on a hash for references purposes
➔ But because a name could have multiple version, we can 

append a tag
◆ debian:11, python:3, nginx:alpine, …



Image, tags, repository

26

➔ To be shared, images need to have a name that includes a 
registry

➔ Default registry: docker.io
➔ Default directory: library
➔ When referencing an image debian:11, in fact is real name is 

docker.io/library/debian:11



Docker image and 
build workflow
Really make the difference between 
building and running



Workflow

28

1. Find a starting appropriate image for your project
2. Find a correct tag for the image
3. Write a Dockerfile that starts from said image
4. docker build to create the image
5. Check information about the image
6. Create one or multiple container(s) from said image with 

docker run



Having a look at 
containers 
mechanisms
What does it look like ?



Container isolation

30

➔ Isolation is done via 2 syscalls:
◆ chroot(2)
◆ namespaces(7)

➔ chroot:
◆ Change the root directory for a process
◆ Prevent the process from accessing anything not in its 

root
◆ Example

https://asciinema.org/a/485188


Container isolation - chroot

31

➔ Changing a process root directory means preventing it from 
accessing host libraries
◆ /usr/lib for example might be needed and then provided

➔ A good way to control installed libraries and their version
➔ Needs to provide an “OS” in the chrooted directory

◆ Needed binaries, libs, FHS, …
◆ Tends to make a container VM-ish



Container isolation - namespaces

32

➔ Other syscall namespaces(7)
➔ Create a namespace of a kind for a process (and its children)
➔ Kind of namespace:

◆ Network
◆ Mount
◆ PID
◆ User
◆ …

➔ Hierarchical approach



Container isolation - namespaces

33

➔ Example of network namespace
➔ Example of PID (and user) namespace

https://asciinema.org/a/449301
https://asciinema.org/a/485195


Container limitation

34

➔ A container shall be limitable
➔ Like VM : allow max resources

◆ Avoid CPU burst, OOM, …
➔ Linux mechanism: cgroups



Cgroups (v2)

35

➔ Linux mechanism to add process in a control group
➔ Control groups allow to set limits on various resources

◆ Limits are hierarchical, a sub cgroup cannot exceed its 
parent limits

➔ 2 versions of cgroups:
◆ v2 used on modern systems
◆ v1 still widely used

➔ Exposed as a pseudo filesystem
◆ Check mount(1) output



Cgroups (v2)

36

➔ Cgroups example with cpuset cgroup

https://asciinema.org/a/485799


Container isolation - how to share ?

37

➔ What if you need to share a directory ?
◆ Ephemeral containers aren’t suitable for persistent data

➔ What if your container must be network accessible ?
➔ Docker offers way to share resources

◆ Let’s have a look at its CLI



Understand 
implications of such 
isolation through 
network
Maybe a schema will help ?



Container isolation boxes

39

➔ Most important part of container isolation to understand is 
the box model

➔ The host is the bigger box, and contains the rest
➔ Asymmetrical relation



Container isolation boxes - network

40

➔ For network aspect,
docker creates a subnet by
default

➔ Each container is put in this 
default subnet

➔ Allow to access internet
◆ But by default not accessible 

from outside
➔ Can communicate with each 

others



Container isolation boxes - network

41

➔ Let’s have some network 
services listening and awaiting 
connections: App1, 2 & 3

➔ Listening on IP:port
◆ 0.0.0.0:8080
◆ 0.0.0.0:8080
◆ 127.0.0.1:8080

➔ Listening on IP 0.0.0.0 means 
listening on all IP addresses



Container isolation boxes - network

42

➔ App1 and App2 don’t step on 
each others toes
◆ Different containers
◆ Different IP addresses
◆ They can both listen on port 

8080
➔ Can 10.0.0.10 reach 

172.17.0.2:8080 ?
➔ Can the host reach App3 ?
➔ Can container1 reach App3 ?



Container isolation boxes - network

43

➔ “En fait l’histoire est plus 
complexe”

➔ Each container and the host have 
their own localhost (127.0.0.0/8) 
subnet

➔ To expose App1 (or App2) 
publicly, a link must be made 
between 10.0.0.20 and 
172.17.0.2 (172.17.0.3)



Container isolation boxes - network

44

➔ Running the containers with -p to 
expose ports (docker run -p) allow 
external connections and 
mapping

➔ App1 is reachable from 10.0.0.10 
on 10.0.0.20:80

➔ App1 is reachable from Host on 
127.0.0.1:80, 10.0.0.20:80 or 
172.17.0.2:8080



Container isolation boxes - network

45

➔ App2 is not reachable from 
10.0.0.10

➔ App2 is reachable from Host on 
127.0.0.1:5000 or 172.17.0.3:8080

➔ App3 is reachable only* from 
container 3 on 127.0.0.1:8080

* actually can be reached from the Host by 
tricking quite a bit, but not covered by the 
course



A word about 
overlayfs
Understand this to build better images



Overlayfs

47

➔ Docker uses overlayfs to assemble images
◆ Also to run containers on top of an image

➔ Overlayfs is interesting and a bit complex
◆ Won’t go into details here
◆ Basically uses layers

● A layer contains all the files changed at a step
● An image is built with multiple steps = multiple layers
● A container adds a final layer on an image: the 

runtime diffs



Overlayfs

48

➔ Overlayfs layers
◆ A layer contains all the files changed at a step
◆ An image is built with multiple steps = multiple layers

➔ Many steps = Many layers
◆ It is preferable to reduce as much as possible
◆ Example:

● RUN apt-get install -y vim
RUN echo “syntax on” > ~/.vimrc
->
RUN apt-get install -y vim && echo “syntax on” > ~/.vimrc



Overlayfs

49

➔ A layer that add a 1GiB file and layer that removes it after = 
1GiB still

➔ A layer that both adds & removes = ~no space taken
◆ Important to apt-get install and remove cache in the 

same layer
➔ 2 Images with common instructions creates the same layers

◆ Until they diverge
◆ Important to put the common instructions first
◆ Then packages installation (heavy)
◆ Then image-specific things



Overlayfs

50

➔ You can see layers when building images
◆ They are designated by a hash

➔ When pulling
➔ With docker inspect
➔ With mount if a container is running



Overlayfs

51



docker-compose



Docker cli limitations

53

➔ Docker cli is a bit limited for some cases
◆ Lots of arguments
◆ Needs to remember the arguments to 

restart/change/move the container
◆ Can be considered config, but isn’t in a config file

● Against 12 factors



docker-compose

54

➔ Docker-compose translate a config file into docker commands
➔ Used to declare statically containers, networks, volumes, …
➔ YAML format
➔ docker-compose.yml 



docker-compose

55

➔ docker-compose up to create and run the containers
➔ docker-compose down to stop and delete the containers
➔ docker-compose start/stop to start/stop the containers
➔ docker-compose logs to look at containers logs
➔ That’s most of its CLI usage
➔ docker-compose is not a daemon, just a “translator” that 

reads YML to convert it to docker commands



About 
docker-compose.yml 
file
How to write this config file ?



docker-compose.yml

57

➔



docker-compose.yml

58

➔ ~Equivalent to:



Thanks !
Questions ?

59



Slides available on zarak.fr/

Contact: cyril@cri.epita.fr
zarak production#5492

60


