
DevOps,
Docker and Gitlab-CI
Part 3: Gitlab-CI

-- Cyril zarak Duval, root CRI/ACU 2020

Version 1.1.0 (2023-02-15)



Gitlab-CI



Git workflow and CI/CD

3

➔ You need to use a VCS to work efficiently with many people
◆ Git is obviously the most popular VCS

➔ The way you work with git is called a git workflow
➔ A git workflow is a set of rules and best practices for a project 

or a team
◆ Ex: don’t push on master branch directly



Git workflow and CI/CD

4

➔ Usual git workflow looks like this:
◆ master/main/devel branch represents the project “stable” 

version
● It’s the most important branch
● One cannot push directly to it (protected)
● The ability to merge is limited to maintainers

◆ To add a new feature, one must create a branch



Git workflow and CI/CD

5

➔ Git workflow can also:
◆ Setup a git message format
◆ Allow/force/forbid to squash commits in a branch
◆ Choose between merge commits, fast forward or not, or 

rebases
◆ Enforce a branch naming convention
◆ Allow or not push force on feature branches
◆ …



Git workflow and CI/CD

6

➔ Usually you want to assert code quality before merging it
➔ People review Merge/Pull Requests before merging them

◆ Again, it depends on your git workflow
➔ People often make mistakes
➔ Continuous integrations (CI) can help but running your

◆ e2e tests
◆ Unit tests
◆ Linter
◆ …



Git workflow and CI/CD

7

➔ CI can also try to compile your project to see if there are errors 
or warnings

➔ Make available build on release
➔ Push the new version somewhere

◆ In this case it’s called a CD: continuous deployment
➔ CI/CD are more or less the same: code to be executed with a 

git workflow
◆ CI are tests to ensure quality
◆ CD deploys automatically



Git workflow and CI/CD

8

➔ When to run your CI/CD depends on your git workflow
➔ Examples include:

◆ On each commit
◆ Manually
◆ On tags
◆ On specific branches
◆ Based on the commit name
◆ On merge requests
◆ …



Gitlab-CI

9

➔ Gitlab comes with a CI/CD system: Gitlab-CI
➔ In your project, create a .gitlab-ci.yml
➔ This file is a config file describing your CI/CD:

◆ What to do
◆ When to do it
◆ How to do it

➔ In the project options, CI/CD options available to:
◆ Provide variables (like keys for deployment)
◆ Setup pipeline triggers
◆ ….



Gitlab-CI and its integration

10

➔ Gitlab-ci in itself is a very powerful tool
◆ Checkout the gitlab-ci.yml reference file to be convinced

➔ Its strength is also with the integration it comes with:
◆ Secrets
◆ Built-in container registry
◆ Specific/shared runners
◆ Badges: pipeline status, coverage, etc
◆ Triggers
◆ Scheduling
◆ Cross-projects



Gitlab as a DevOps tool

11

➔ Gitlab provides services for DevOps in general
➔ On top of the previously mentioned:

◆ Deployment
● Tracking deployments
● Listing platforms with types
● Well integrated with CI/CD
● Integration with Sentry

◆ Release
◆ Allow advanced Git workflows
◆ Permission system



How to write a 
.gitlab-ci.yml
Don’t get confused with jobs, stages, …



Gitlab-CI

13

➔ Gitlab-CI have a concept of pipeline
➔ A pipeline is a list of stages to execute in a specific order
➔ A stage is a list of jobs to execute in parallel
➔ You can put rules for which jobs/stage to run for a specific 

pipeline
➔ You can put rules to allow failure in a job to not fail the whole 

pipeline
➔ https://docs.gitlab.com/ee/ci/yaml/ is the reference

https://docs.gitlab.com/ee/ci/yaml/


gitlab-ci.yml

14

➔ On the root of the YAML file you can put:
◆ A global keyword
◆ A job



gitlab-ci.yml

15

➔



Gitlab-ci.yml - job

16

➔ A job
◆ has a name (its key on the root of the doc)
◆ is in a stage
◆ has a script to run



Gitlab-ci.yml - job

17

➔ Job context is independant
◆ Each job is run in a new environment

● Except for the artifacts which remain
● Artifacts are defined explicitly

◆ The script is executed in a directory where the project is
● It’s provided as a git repo, you can do git operations

○ You can even commit from a CI/CD
◆ Environment variables are provided with informations 

about the job
● Git commit hash, git branch, repo URL, …



Gitlab-ci.yml - job

18

➔ How can you run a job in a new environment every time ?
◆ Without being able to escape this environment
◆ While being as deterministic as possible
◆ While having a way to choose what will be in the env

● Like packages, or even the OS
➔ If you don’t have a hint on how to implement that, go back to 

the first slide
➔ (sidenote: some people don’t use containers as a runner 

executor. It remains the most popular one though)



Thanks !
Questions ?

19



Slides available on zarak.fr/

Contact: cyril@cri.epita.fr
zarak production#5492

20


