
IDVOC
- Intro & DevOps

-- Cyril zarak Duval, root CRI/ACU 2020



Introduction
Generic information about the course



Why should you listen to the course ?

➔ Being able to code is nice, without the production is 
useless

➔ State of the art notions
➔ Having the rights tools makes you more proficient
➔ Subject somewhat difficult
➔ Getting a decent grade

3



Who am I ?

➔ Why this slide ?
◆ To understand my profile and my point of view 

➔ EPITA 2020 - CRI/root ACU
◆ ~5 years of real DevOps experience
◆ I know EPITA and students’ POV

➔ “DevOps engineer” title, in fact more SRE / Ops oriented
◆ Not a dev

4



Plan

1. DevOps concepts
2. DevOps tools

a. YAML
b. docker
c. docker-compose

5



What is DevOps ?
Surprisingly, it’s both Dev and Ops



DevOps

7

➔ Contraction of Development and Operations
➔ Development:

◆ Creating code, applications, …
◆ A will to introduce changes
◆ Work env: your laptop, your IDE

➔ Operations:
◆ Ensuring services are working and available (including 

aforementioned applications)
◆ A will to not break anything (somewhat reluctant to 

change)
◆ Work env: servers/VMs, a text editor and ssh



DevOps

8

➔ DevOps is a set of tools and practices
➔ Aim to reduce – even remove – friction between Devs and 

Ops
➔ Devs are doing a bit of Ops
➔ Ops are doing a bit of Dev
➔ DevOps is not really a job per-se
➔ Some DevOps tools are so popular they became new 

standards



Devs and 
Ops 
relation

9



DevOps 
scope

10



What issues are 
solved by DevOps?
Why is everyone so psyched by DevOps ?



DevOps - Dev POV

12

➔ Devs work on their laptop
◆ Their OS
◆ Their libraries
◆ Their environment
◆ Their hardware specs
◆ Their network stack
◆ …

➔ How to ship that to production servers seamlessly ?
➔ What are the meaningful differences ?



DevOps - Dev POV

13

➔ How does a Dev introduce architectural changes ?
➔ How to add a new dependency ?
➔ How to avoid “but it worked on my laptop :’(“ ?

But also …
➔ How to reduce time-to-market ?
➔ How to easily understand years of dev without you ?
➔ How to work with coworkers ?

◆ That will be different from you



DevOps - Ops POV

14

➔ How to deploy Dev’s application ?
➔ How to make sure it’s working well ?
➔ How to know what the dependencies are ?
➔ How to upgrade things without breaking anything ?
➔ How to avoid differences between prod and dev env ?
➔ How to handle config/secrets ?
➔ How to easily understand years of ops without you ?
➔ How to work with coworkers ?

◆ That will be different from you



DevOps - Solutions

15

➔ Devs must have some knowledge on how things are 
deployed

➔ Devs should have some control on ops side
◆ Limited, scoped, supervised …
◆ They aren’t ops
◆ Control should be application-oriented

➔ Ops should be involved in the dev process
◆ Not necessarily by coding directly
◆ Focus on dependencies



How does DevOps 
solve those issues?
Surely, it isn’t magic



DevOps - Concepts

17

➔ Devops concepts are built around “12 factors”
➔ Goals of those 12 factors:

◆ Be as declarative as possible
◆ Understand interactions between app and system
◆ No divergence between dev and prod
◆ Try to be platform agnostic
◆ Be able to scale up/down



DevOps - 12 factors - focus

18

➔ I. Codebase
◆ One codebase tracked in revision control, many deploys

➔ II. Dependencies
◆ Explicitly declare and isolate dependencies

➔ III. Config
◆ Store config in the environment

➔ VII. Port binding
◆ Export services via port binding

➔ X. Dev/prod parity
◆ Keep development, staging, and production as similar as 

possible



DevOps - Practical aspect

19

➔ I2 factors is not the magical solution to everything
◆ It gives good advices
◆ Generic concepts

➔ DevOps is about mentality and tools
◆ Let’s look at the tools to understand the mentality



Thanks !
Questions ?

20



Slides available on zarak.fr/

Contact: cyril@cri.epita.fr
zarak production#5492

21


