
DevOps,
Docker and Gitlab-CI
Part 4: Observability

-- Cyril zarak Duval, root CRI/ACU 2020

Version 1.1.0 (2023-02-15)

DevOps and
observability
DevOps is also about visibility for
everyone

What is observability

3

➔ Once an application is in production, how does it behave ?
➔ Is it overloaded ?
➔ Is it working well ?
➔ Are there clients on it ?
➔ Are they facing errors ?
➔ Bugs ?
➔ If so, what kind ?
➔ How to investigate easily ?
➔ Shall we consider scaling up/down ?
➔ For an on-call ops, how to understand what’s going on ?

What is observability

4

➔ A solution to all these questions are observability
➔ 3 pillars:

◆ Monitoring
◆ Logging
◆ Tracing

➔ Ops shall provide platforms to receive these signals
➔ Dev shall provide such observability in their apps

◆ And if applicable, documentation about the observability
● And the actions to take if any

What is observability

5

metrics
Who doesn’t love graphs, charts and
histograms ?

Metrics

7

➔ Metrics is about exposing internal stats in a numerical form
➔ Metrics are meant to be aggregated
➔ Metrics are to be collected by an external tool
➔ Metrics are usually meant to be plotted
➔ 2 kinds of metrics:

◆ Data already numeric
◆ Data converted to be represented by numbers

➔ Metrics represent a state of a system at a given time
➔ Used to understand what is happening, not why

What is observability - metrics

8

➔ Most popular way of exposing metrics now:
◆ Expose a HTTP route

● Or HTTPS
● /metrics

◆ Prometheus format
➔ metric_name_unit{label1=”value1”, label2=”value2”} value

What is observability - metrics

9

➔ What kind of metrics to expose ?
➔ total metrics

◆ Number of requests handled in total
◆ Number of file read in total
◆ ….

➔ count/size/… metrics
◆ Number of requests handled right now
◆ Number of open files right now
◆ Size of the event queue
◆ …

What is observability - metrics

10

➔ What kind of metrics to expose ?
➔ seconds metrics

◆ Amount of time taken to answer a request
◆ Time taken writing data to cache
◆ ….

➔ metadata metrics
◆ Version of the running app
◆ Running architecture
◆ …

What is observability - metrics

11

➔ Metrics are key to see what’s going on
➔ We plot graph and we can visualize
➔ High level metrics (KPI) and low level
➔ Used for alerting

◆ Ex: sudden drop of connected users
➔ Used for reporting

◆ Ex: increasing amount of time taken to handle a request
after an update

◆ Ex: average user document size increasing over months

logs
You logged things without even knowing
it

What is observability - logs

13

➔ Logs are the most useful indication to understand what is
going on in the app in details, with description
◆ They don’t provide any global overview though

➔ Useful to get information about:
◆ Understanding what’s going wrong
◆ Which client/route/component is:

● Used
● Not working
● Hammered

◆ What is the app doing

What is observability - logs

14

➔ Logs can hold a lot of value
◆ Even legal one, mind the GDPR for example

➔ 2 schools of thoughts about providing logs:
◆ stdout/stderr (pull model)
◆ syslog/elastic/… client (push model)

➔ Logs must be structured
◆ syslog format
◆ JSON
◆ Homemade but consistent

What is observability - logs

15

➔ Why should logs be structured ?
➔ Useful to search for specific things

◆ Logs will often be put in Loki, Elastic, …
◆ They provide query languages

● Ex: {component=”auth”, severity=”error”}
● Ex: client_id: 10 AND route: “/login”

➔ Having a structure (and a consistent and documented one) is
important

➔ GiB of logs to be generated: not read manually

What is observability - logs

16

➔ Logs shall have a severity level:
◆ DEBUG
◆ INFO
◆ WARNING
◆ ERROR

➔ Severity level must be configurable
➔ The amount of logs generated must be chosen carefully
➔ For DEBUG, don’t care
➔ Starting from INFO, one must be wise
➔ Use a logging library

What is observability - logs

17

➔ What kind of logs can we have ?
➔ One think of application logging first

◆ What is my application doing
◆ Examples:

● INFO User making a query on /api/v1/tickets
● WARNING Cache is full. Dropping half its content
● ERROR Exception uncaught while handling query
● DEBUG read 17 bytes from file /var/run/myapp/fEcUs.tmp
● FATAL Could not write data: disk is full

What is observability - logs

18

➔ What kind of logs can we have ?
➔ Security logs

◆ Admin user changed its password
◆ Deletion of xxx
◆ New device logged-in

➔ Audit, system and infra logs are used for ops

tracing
Follow the trail of events in details

What is observability - tracing

20

➔ Logs are great to see some generic information about ongoing
operation in the application

➔ They are not focused on a single user request
◆ Single transaction

➔ Traces are meant to cover this case

What is observability - tracing

21

➔ What if you application throw an error while handling a client query ?
➔ You don’t want the whole app to crash for most cases
➔ Just return an error to the client
➔ You also need the error to be reported to you to fix it
➔ Logs ?

◆ Stacktrace are multi-lines
◆ They have their own context
◆ Put in the logs some concise information usually

● ex: “Can’t connect to DB”
● ex: “Can’t find <...> for <...> via <...>”

What is observability - tracing

22

➔ Send the whole stacktrace and its context to another service
➔ Error tracking service
➔ Example: Sentry
➔ Regroup similar errors and plot their occurence
➔ Integrated with Gitlab to report bugs and regression
➔ Provide context

◆ Browser used, account id, … if useful
◆ Crumbs
◆ Runtime data
◆ Alerts

What is observability - tracing

23

➔ Tracing also covers multi spans transactions for microservices
architectures

➔ A trace is created for each transaction
◆ Very high granularity
◆ Often downsampled

➔ Used to understand interactions between services
◆ Is the database slow ? microservice A, B or C ?

➔ A bit more difficult to put in place than logs & metrics
◆ More specialized

➔ Check OpenTelemetry, Sentry, ZipKin, Tempo, …

A connected element
of observability:
monitoring
Collect, store, observe, alert, report

Monitoring

25

➔ Monitoring is a subcategory of observability
◆ Or another concept but tightly linked to observability

➔ Monitoring is about 5 points:
◆ Collect
◆ Store
◆ Visualize
◆ Alert
◆ Report

Monitoring - Collecting

26

➔ The collecting component of a monitoring solution is in charge
of getting the data

➔ Pull/Push
➔ Metrics-oriented mostly
➔ Examples:

◆ Netdata
◆ Node exporter/Prometheus
◆ Metricbeats
◆ Telegraf

Monitoring - Storing

27

➔ Metrics are representation of things happening at a given time
➔ Need to store them to have trends, history and evolution
➔ The volumetry can be quite high

◆ Depends on the resolution (1s, 15s, 30s, 1m, …)
◆ Depends on the amount of metrics

● Cardinality
➔ Use dedicated databases for this (often Time Serie

DataBases)
➔ Example: Prometheus, Netdata, InfluxDB

Monitoring - Visualizing

28

➔ Once collected over time, metrics are best represented with
graphs (visualization in general)

➔ Need to have real-time dashboards
➔ Graphs, histograms, plots, …
➔ Focus on the UI/UX
➔ Example:

◆ Grafana
◆ Netdata
◆ Kibana
◆ Chronograf

Monitoring - Reporting

29

➔ Reporting is most of the time forgotten and less popular
➔ Report once in a while (weekly, monthly, …) what happened,

and trends
➔ Create a report (i.e. PDF file) with visualizations
➔ Used to be aware of non-immediate situation
➔ Often mangled with the visualization & alerting component

Monitoring - Alerting

30

➔ Observability & Monitoring are useful to see and try to
understand what’s going on with your app/infra

➔ Used for post-mortems
◆ Evidence of the issue
◆ Provide tools for RCA to try to determine the RCE

➔ If one can understand through metrics an issue that
happened, why not alert when it happens ?
◆ Or even before if we can

Monitoring - Alerting

31

➔ Alerting should be done first on high-level metrics
◆ Number of clients
◆ Number of videos being watched
◆ Number of emails sent
◆ Latency increasing

➔ Alerting can be done on low-level metrics with care
◆ If high CPU but no impact on the client, is it an alert ?
◆ 10% of disk left, is it the same if 1GiB left of 1TiB ?

Monitoring - Alerting

32

➔ Alerts should have multiple level of criticality
◆ Think about whether to wake up an ops or not for

example
◆ Lowest level(s) can even be moved to reporting

➔ Too many alerts = alert fatigue
➔ Too many false positives = more chances to miss an

important one

Monitoring - Alerting

33

➔ Be extra careful with alerting

Monitoring - Alerting

34

➔ Be extra careful with alerting

Monitoring - Alerting

35

➔ How to do proper alerting ?
➔ Many ask the question and few found the answer
➔ Appears to always be a balance between too many and too

few alerts

Monitoring - Alerting

36

➔ Alerts should be derived from SLIs, taking into account the
SLOs and sold SLA
◆ Service Level Indicators - A quantifiable indicator of the

level of service provided (often mistaken for KPIs)
◆ Service Level Objectives - An objective set on a SLI about

how much a SLI can fail
◆ Service Level Agreement - What has been sold to the

client in terms of disponibility

Monitoring - Alerting

37

➔ SLA is 100% - SLO, represents the % of availability
◆ Also expressed in a number of 9

● Three 9s means 99.9% of availability
◆ Also expressed in allowed failure time per period of time

➔ 99.9% of SLA = 8.7h/y, 44min/m
➔ 99.99% = 52min/y, 4.3min/m
➔ 99.999% = 5.2min/y, 26.3s/m
➔ Alerts can use this budget of allowed failure to avoid false

positives by working on the burn rate

Thanks !
Questions ?

38

Slides available on zarak.fr/

Contact: cyril@cri.epita.fr
zarak production#5492

39

