
DevOps,
Docker and
Observability

-- Cyril zarak Duval, root CRI/ACU 2020

Version 1.2.0 (2024-03-10)

Introduction
Generic information about the course

Why should you listen to the course ?
➔ Being able to code is nice, without the production is

useless
➔ State of the art notions
➔ Having the rights tools makes you more proficient
➔ Subject somewhat difficult
➔ Getting a decent grade

3

Who am I ?
➔ Why this slide ?

◆ To understand my profile and my point of view
➔ EPITA 2020 - CRI/root ACU

◆ ~8 years of real DevOps experience
◆ I know EPITA and students’ POV

➔ “DevOps engineer” title, in fact more SRE / Ops oriented
◆ Not a dev

4

Plan

1. DevOps concepts
2. DevOps tools

a. YAML
b. Docker
c. Docker compose

3. Git workflow
4. Observability

5

What is DevOps ?
Surprisingly, it’s both Dev and Ops

DevOps

7

➔ Contraction of Development and Operations
➔ Development:

◆ Creating code, applications, …
◆ A will to introduce changes
◆ Work env: your laptop, your IDE

➔ Operations:
◆ Ensuring services are working and available (including

aforementioned applications)
◆ A will to not break anything (somewhat reluctant to

change)
◆ Work env: servers/VMs, a text editor and ssh

DevOps

8

➔ DevOps is a set of tools and practices
➔ Aim to reduce – even remove – friction between Devs and

Ops
➔ Devs are doing a bit of Ops
➔ Ops are doing a bit of Dev
➔ DevOps is not really a job per-se
➔ Some DevOps tools are so popular they became new

standards

Devs and
Ops
relation

9

DevOps
scope

10

What issues are
solved by DevOps?
Why is everyone so psyched by DevOps ?

DevOps - Dev POV

12

➔ Devs work on their laptop
◆ Their OS
◆ Their libraries
◆ Their environment
◆ Their hardware specs
◆ Their network stack
◆ …

➔ How to ship that to production servers seamlessly ?
➔ What are the meaningful differences ?

DevOps - Dev POV

13

➔ How does a Dev introduce architectural changes ?
➔ How to add a new dependency ?
➔ How to avoid “but it worked on my laptop :’(“ ?

But also …
➔ How to reduce time-to-market ?
➔ How to easily understand years of dev without you ?
➔ How to work with coworkers ?

◆ That will be different from you

DevOps - Ops POV

14

➔ How to deploy Dev’s application ?
➔ How to make sure it’s working well ?
➔ How to know what the dependencies are ?
➔ How to upgrade things without breaking anything ?
➔ How to avoid differences between prod and dev env ?
➔ How to handle config/secrets ?
➔ How to easily understand years of ops without you ?
➔ How to work with coworkers ?

◆ That will be different from you

DevOps - Solutions

15

➔ Devs must have some knowledge on how things are
deployed

➔ Devs should have some control on ops side
◆ Limited, scoped, supervised …
◆ They aren’t ops
◆ Control should be application-oriented

➔ Ops should be involved in the dev process
◆ Not necessarily by coding directly
◆ Focus on dependencies

How does DevOps
solve those issues?
Surely, it isn’t magic

DevOps - Concepts

17

➔ Devops concepts are built around “12 factors”
➔ Goals of those 12 factors:

◆ Be as declarative as possible
◆ Understand interactions between app and system
◆ No divergence between dev and prod
◆ Try to be platform agnostic
◆ Be able to scale up/down

DevOps - 12 factors - focus

18

➔ I. Codebase
◆ One codebase tracked in revision control, many deploys

➔ II. Dependencies
◆ Explicitly declare and isolate dependencies

➔ III. Config
◆ Store config in the environment

➔ VII. Port binding
◆ Export services via port binding

➔ X. Dev/prod parity
◆ Keep development, staging, and production as similar as

possible

DevOps - Practical aspect

19

➔ I2 factors is not the magical solution to everything
◆ It gives good advices
◆ Generic concepts

➔ DevOps is about mentality and tools
◆ Let’s look at the tools to understand the mentality

Let’s talk about
configuration
Let me introduce you to a new job:
YAML engineer

Configuration

21

➔ Article 3 of the 12 factors
◆ strict separation of config from code

➔ What does it means ?
➔ Softwares must not include configuration within the code
➔ Configuration shall not even be in the code VCS

◆ But could and should be stored in another VCS
● Be careful not to store any secrets in plaintext in a

VCS however
➔ Configuration will be different between dev, staging and

prod(s)

What is configuration ?

22

➔ What is configuration ?
◆ Everything removing genericity
◆ Everything that can change from an env to another

➔ Examples:
◆ Address of the database
◆ IP/port to bind to
◆ Log-level
◆ Path(s) to store data
◆ ….

How to provide config ?

23

➔ How to provide configuration ?
◆ env variables

● Recommended for simple cases, but limited
● Only Key-Value

◆ Config files
● A bit more complex to setup/provide but advanced
● Allow lists, mapping, etc

➔ How to write a config file ?
➔ Introducing to the most well known format in DevOps:

YAML

YAML

24

➔ YAML = Yet Another Markup Language
➔ Used for Docker-compose, Gitlab-CI, Kubernetes, Helm

charts, Ansible, Elasticsearch, Argo, Harbor, …..
➔ A superset of JSON to make it more human readable

◆ Meaning that JSON is valid YAML
◆ Even small JSON snippets embedded within a YAML file

➔ .yml or .yaml extension
➔ Libs in every language to parse it

YAML - the simple way

25

➔ YAML is a key-value format
➔ key is a string, value can be :

◆ string
◆ int
◆ boolean
◆ list
◆ mapping

➔ Indentation is important
➔ Quoting can be used

YAML -
the simple
way

26

YAML -
Advanced
features

27

28

YAML - tools

29

➔ yq is a useful tool to parse yaml in bash
➔ yamllint detects linting errors, inconsistencies and warn you

about possible misuage

YAML - pitfalls

30

➔ YAML by its nature can mislead users
➔ Here are some points to be careful on:

◆ JSON being valid YAML syntax
◆ Strings can be unquotted

● Be careful with numbers
◆ The Norway problem

● Case insensitive booleans in [Yes, True, On, Y]
◆ Indentation
◆ Mixup of “complex” types (mapping of lists of mappings,

…)

YAML - some help

31

➔ https://docs.ansible.com/ansible/latest/reference_appendi
ces/YAMLSyntax.html

Let’s dive in
Docker

Docker with an
example
Let’s have a look first at the top level

Quick docker overlook

34

➔ I want to run a webserver quickly
➔ I don’t really know in details any
➔ I don’t want to mess with the things installed on my computer

◆ Libraries, general packages …
➔ I just need it for some time and then forget about it
➔ Maybe I’ll need it again in some months

With docker

https://asciinema.org/a/484825

What are Docker and
containers ?
Let’s try to understand with more or less
details

What is Docker ?

36

➔ Docker is a container engine
➔ It allows you to:

◆ Create images
◆ Start containers from those images
◆ Manage containers
◆ Exchange images

What are containers and images ?

37

➔ A container is “kinda” like a virtual machine
➔ A container is not a universal definition

◆ We’re talking about linux containers in this course
➔ A container is essentially a process (and its sub-processes if

any) which is isolated
➔ A container is ephemeral by design
➔ An image (in docker/OCI) is the source of a container

◆ From an image you can create multiple containers
◆ Each container is created from an image
◆ See the relation like class/object in OOP

Container vs VM

38

➔ VM uses CPU mechanisms (+ bits of hypervisor)
➔ VM needs its own kernel
➔ VM can be of different architecture (x86, ARM, RISC-V, …)

◆ Virtualization, paravirtualization, emulation
➔ Host (hypervisor) doesn’t have much access in the VM

◆ i.e. can’t see natively its process, load, etc
➔ Container is simply a linux process isolated with kernel

mechanisms
➔ Host has full access on the container

Container vs VM

39

➔ VM needs to be setup with RAM amount, CPU count, disk, etc
➔ Container is a process. You can limit resources but not

mandatory
➔ Containers are lighter:

◆ No kernel
◆ Faster to start
◆ Can even run without an OS

➔ Containers are less secure
➔ Containers can’t run everything (i.e. no windows on linux)
➔ Containers are ephemeral by nature

Container vs regular process

40

➔ What makes a process a container ?
➔ Isolation of:

◆ Filesystem
◆ Other running processes
◆ Users
◆ And also: network, mountpoints, UTS (hostname), …

➔ Can also have limitations (CPU, memory, etc)
➔ No clear way of identification

◆ No “container id” or anything provided by the kernel

Why do even need
containers ?
Don’ t only take my word, but there are
useful

Why do we use containers ?

42

➔ Control your OS (it’s in the image)
◆ No dependency issue from a laptop to a server:

everything is in the image
◆ Can have multiple libs in parallel (in different images)

➔ Common interface to build and run applications
➔ Share easily the images

◆ The app and all its dependencies
➔ Version control
➔ Isolation

Why do we use containers ?

43

➔ Cheap
◆ Quick to build
◆ Quick to start
◆ No overhead (unlike VMs)

➔ No difference between your laptop, dev server and prod
server

➔ Follow the 12 factors principles

How does Docker
work ?
Let’s have a look at the daemon and the
CLI

How does Docker work ?

45

➔ Docker works with a daemon: dockerd
➔ dockerd manages everything
➔ The user can contact dockerd in multiple ways

◆ UNIX socket, TCP, …
➔ Most people use the Docker CLI client, the command docker
➔ The docker command will contact the docker daemon to

execute the user inputed command

How does Docker work ?

46

➔ The Docker daemon manages running, stopped containers,
but also images, volumes, etc…

➔ If the daemon is not running, or you don’t have the
permissions to contact it, you might get some error like

➔ Got permission denied while trying to connect to the Docker daemon socket
at unix:///var/run/docker.sock: Get
"http://%2Fvar%2Frun%2Fdocker.sock/v1.24/containers/json": dial unix
/var/run/docker.sock: connect: permission denied

Let’s get started with
docker
Creating containers

Docker CLI - run containers

48

➔ To run a container with docker, we use docker run
➔ To check for running containers, we use docker ps
➔ Let’s check docker common operations with containers:

◆ pull, start, stop, ps, image ls, exec

https://asciinema.org/a/489561

How to build docker
images ?
Stop using and start creating

What is a docker image ?

50

➔ We said that docker containers are created from docker image
➔ Like an instance from a class, an object and a template
➔ What defines an image then ?
➔ What’s inside an image ?

What is a docker image ?

51

➔ A docker image is essentially a combination of a few things:
◆ A filesystem

● The “main” binary of the image
● Its libraries, essential files, …
● Some other binaries

○ Dependencies
○ Utilities

● All sets of files deemed worthy of being shipped in
the image

What is a docker image ?

52

➔ A docker image is essentially a combination of a few things:
◆ A filesystem
◆ Some metadatas :

● How it was built
● What commands to run by default
● Some environment variable to set
● …

➔ Docker images are actually more generic and are OCI Images

https://github.com/opencontainers/image-spec

Dockerfile

53

➔ Docker images are built with a Dockerfile*
➔ It’s a recipe-like config file
➔ It has multiple kind of instructions

◆ FROM selects the docker image to start from
◆ RUN let you run arbitrary shell commands
◆ …

● More details to come with the practicum

* there are other ways not to be mentioned in this course

Dockerfile

54

➔ A Dockerfile starts by a source docker image
◆ FROM instruction

➔ Let’s say you want to create an image based on debian
◆ FROM debian:11

➔ Everything from the image stated in FROM will be imported
➔ The rest of the commands will create another image on top of

the initial FROM

Dockerfile

55

➔ Each instruction will perform some modifications on the
image
◆ Add a file
◆ Run a command
◆ Set some variable
◆ ….

➔ Once they are all successfully executed, a new image is built

Image, tags, repository

56

➔ A docker image is defined by a hash (sha256)
➔ But it’s not convenient for most people
➔ So a name can be set on a hash for references purposes
➔ But because a name could have multiple version, we can

append a tag
◆ debian:11, python:3, nginx:alpine, …

Image, tags, repository

57

➔ To be shared, images need to have a name that includes a
registry

➔ Default registry: docker.io
➔ Default directory: library
➔ When referencing an image debian:12, in fact its real name is

docker.io/library/debian:12

Docker image and
build workflow
Really make the difference between
building and running

Workflow

59

1. Find a starting appropriate image for your project
2. Find a correct tag for the image
3. Write a Dockerfile that starts from said image
4. docker build to create the image
5. Check information about the image
6. Create one or multiple container(s) from said image with

docker run

How to find a good image ?

60

● What does define a good image for a project ?
● It depends on what you need
● 95% of projects has a main dependency

○ For example if it’s a python application, its dependency is
… python

○ If it’s a nodejs application, it depends on node
○ Maybe you simply need a generic OS, like Debian

● Find a clean image following your dependency
○ Official, supported, well-used, clean

How to find a good image ?

61

● The base image will be used in its entirety to build your new
image

● Don’t pick an image unnecessarily too big
● Most images are an OS

○ Debian, Ubuntu, Alpine
● Alpine remains the smaller OS there is

○ If possible and applicable, tend to use Alpine
● But how to choose the OS of an image ?

How to find a good image ?

62

● Let’s say we are building a python application
● The best image seems to be “python”
● It’s official, well maintained, up to date and well used
● But which OS do I end-up with ?
● Let’s check it ourself !
● docker run --rm --entrypoint cat python /etc/os-release
● But how do I change ?

How to find a good image ?

63

● Part of selecting a good image is also about selecting the
proper tag

● The python image comes with hundreds of tags
● Tags are way to change the version of python needed
● python:3.9, python:3.11, …
● But they’re also commonly used to change the flavor of the

OS underneath
● python:alpine, python:3.11-alpine

How to find a good image ?

64

● It is a good practice to select an image with an explicit tag
● Keeping latest is often problematic and lead to issues
● Expliciting the tag makes the build reproductible
● Choosing the right tag is also important
● If you only need python and don’t care about the underlying

OS for example:

Having a look at
containers
mechanisms
What does it look like ?

Container isolation

66

➔ Isolation is done via 2 syscalls:
◆ chroot(2)
◆ namespaces(7)

➔ chroot:
◆ Change the root directory for a process
◆ Prevent the process from accessing anything not in its

root
◆ Example

https://asciinema.org/a/485188

Container isolation - chroot

67

➔ Changing a process root directory means preventing it from
accessing host libraries
◆ /usr/lib for example might be needed and then provided

➔ A good way to control installed libraries and their version
➔ Needs to provide an “OS” in the chrooted directory

◆ Needed binaries, libs, FHS, …
◆ Tends to make a container VM-ish

Container isolation - namespaces

68

➔ Other syscall namespaces(7)
➔ Create a namespace of a kind for a process (and its children)
➔ Kind of namespace:

◆ Network
◆ Mount
◆ PID
◆ User
◆ …

➔ Hierarchical approach

Container isolation - namespaces

69

➔ Example of network namespace
➔ Example of PID (and user) namespace

https://asciinema.org/a/449301
https://asciinema.org/a/485195

Container limitation

70

➔ A container shall be limitable
➔ Like VM : allow max resources

◆ Avoid CPU burst, OOM, …
➔ Linux mechanism: cgroups

Cgroups (v2)

71

➔ Linux mechanism to add process in a control group
➔ Control groups allow to set limits on various resources

◆ Limits are hierarchical, a sub cgroup cannot exceed its
parent limits

➔ 2 versions of cgroups:
◆ v2 used on modern systems
◆ v1 still widely used

➔ Exposed as a pseudo filesystem
◆ Check mount(1) output

Cgroups (v2)

72

➔ Cgroups example with cpuset cgroup

https://asciinema.org/a/485799

Container isolation - how to share ?

73

➔ What if you need to share a directory ?
◆ Ephemeral containers aren’t suitable for persistent data

➔ What if your container must be network accessible ?
➔ Docker offers way to share resources

◆ Let’s have a look at its CLI

Understand
implications of such
isolation through
network
Maybe a schema will help ?

Container isolation boxes

75

➔ Most important part of container isolation to understand is
the box model

➔ The host is the bigger box, and contains the rest
➔ Asymmetrical relation

Container isolation boxes - network

76

➔ For network aspect,
docker creates a subnet by
default

➔ Each container is put in this
default subnet

➔ Allow to access internet
◆ But by default not accessible

from outside
➔ Can communicate with each

others

Container isolation boxes - network

77

➔ Let’s have some network
services listening and awaiting
connections: App1, 2 & 3

➔ Listening on IP:port
◆ 0.0.0.0:8080
◆ 0.0.0.0:8080
◆ 127.0.0.1:8080

➔ Listening on IP 0.0.0.0 means
listening on all IP addresses

Container isolation boxes - network

78

➔ App1 and App2 don’t step on
each others toes
◆ Different containers
◆ Different IP addresses
◆ They can both listen on port

8080
➔ Can 10.0.0.10 reach

172.17.0.2:8080 ?
➔ Can the host reach App3 ?
➔ Can container1 reach App3 ?

Container isolation boxes - network

79

➔ “En fait l’histoire est plus
complexe”

➔ Each container and the host have
their own localhost (127.0.0.0/8)
subnet

➔ To expose App1 (or App2)
publicly, a link must be made
between 10.0.0.20 and
172.17.0.2 (172.17.0.3)

Container isolation boxes - network

80

➔ Running the containers with -p to
expose ports (docker run -p) allow
external connections and
mapping

➔ App1 is reachable from 10.0.0.10
on 10.0.0.20:80

➔ App1 is reachable from Host on
127.0.0.1:80, 10.0.0.20:80 or
172.17.0.2:8080

Container isolation boxes - network

81

➔ App2 is not reachable from
10.0.0.10

➔ App2 is reachable from Host on
127.0.0.1:5000 or 172.17.0.3:8080

➔ App3 is reachable only* from
container 3 on 127.0.0.1:8080

* actually can be reached from the Host by
tricking quite a bit, but not covered by the
course

A word about
overlayfs
Understand this to build better images

Overlayfs

83

➔ Docker uses overlayfs to assemble images
◆ Also to run containers on top of an image

➔ Overlayfs is interesting and a bit complex
◆ Won’t go into details here
◆ Basically uses layers

● A layer contains all the files changed at a step
● An image is built with multiple steps = multiple layers
● A container adds a final layer on an image: the

runtime diffs

Overlayfs

84

➔ Overlayfs layers
◆ A layer contains all the files changed at a step
◆ An image is built with multiple steps = multiple layers

➔ Many steps = Many layers
◆ It is preferable to reduce as much as possible
◆ Example:

● RUN apt-get install -y vim
RUN echo “syntax on” > ~/.vimrc
->
RUN apt-get install -y vim && echo “syntax on” > ~/.vimrc

Overlayfs

85

➔ A layer that add a 1GiB file and layer that removes it after =
1GiB still

➔ A layer that both adds & removes = ~no space taken
◆ Important to apt-get install and remove cache in the

same layer
➔ 2 Images with common instructions creates the same layers

◆ Until they diverge
◆ Important to put the common instructions first
◆ Then packages installation (heavy)
◆ Then image-specific things

Overlayfs

86

➔ You can see layers when building images
◆ They are designated by a hash

➔ When pulling
➔ With docker inspect
➔ With mount if a container is running

Overlayfs

87

docker compose

Docker cli limitations

89

➔ Docker cli is a bit limited for some cases
◆ Lots of arguments
◆ Needs to remember the arguments to

restart/change/move the container
◆ Can be considered config, but isn’t in a config file

● Against 12 factors

Docker compose

90

➔ docker compose translate a config file into docker commands
➔ Used to declare statically containers, networks, volumes, …
➔ YAML format
➔ docker-compose.yml

Docker compose

91

➔ docker compose up to create and run the containers
➔ docker compose down to stop and delete the containers
➔ docker compose start/stop to start/stop the containers
➔ docker compose logs to look at containers logs
➔ That’s most of its CLI usage
➔ docker compose is not a daemon, just a “translator” that

reads YML to convert it to docker commands

Docker compose

92

➔ docker compose up to create and run the containers
➔ docker compose down to stop and delete the containers
➔ docker compose start/stop to start/stop the containers
➔ docker compose logs to look at containers logs
➔ That’s most of its CLI usage
➔ docker compose is not a daemon, just a “translator” that

reads YML to convert it to docker commands

About
docker-compose.yml
file
How to write this config file ?

docker-compose.yml

94

➔

docker-compose.yml

95

➔ ~Equivalent to:

Docker compose vs
docker-compose
Docker Inc. likes to make things complex
- they were founded by frenchs after all

Docker compose

97

➔ You might encounter 2 versions of docker compose, with 2
syntaxes:
◆ docker-compose and docker compose

➔ docker-compose is the v1 of the docker/compose project
◆ Old, was written in python, works well but not maintained

anymore
➔ docker compose is the v2 of the docker/compose project

◆ New, to be preferred. Don’t use docker-compose anymore
if you can

Git workflow and
CI/CD

Git workflow and CI/CD

99

➔ You need to use a VCS to work efficiently with many people
◆ Git is obviously the most popular VCS

➔ The way you work with git is called a git workflow
➔ A git workflow is a set of rules and best practices for a project

or a team
◆ Ex: don’t push on master branch directly

Git workflow and CI/CD

100

➔ Usual git workflow looks like this:
◆ master/main/devel branch represents the project “stable”

version
● It’s the most important branch
● One cannot push directly to it (protected)
● The ability to merge is limited to maintainers

◆ To add a new feature, one must create a branch

Git workflow and CI/CD

101

➔ Git workflow can also:
◆ Setup a git message format
◆ Allow/force/forbid to squash commits in a branch
◆ Choose between merge commits, fast forward or not, or

rebases
◆ Enforce a branch naming convention
◆ Allow or not push force on feature branches
◆ …

Git workflow and CI/CD

102

➔ Usually you want to assert code quality before merging it
➔ People review Merge/Pull Requests before merging them

◆ Again, it depends on your git workflow
➔ People often make mistakes
➔ Continuous integrations (CI) can help but running your

◆ e2e tests
◆ Unit tests
◆ Linter
◆ …

Git workflow and CI/CD

103

➔ CI can also try to compile your project to see if there are errors
or warnings

➔ Make available build on release
➔ Push the new version somewhere

◆ In this case it’s called a CD: continuous deployment
➔ CI/CD are more or less the same: code to be executed with a

git workflow
◆ CI are tests to ensure quality
◆ CD deploys automatically

Git workflow and CI/CD

104

➔ When to run your CI/CD depends on your git workflow
➔ Examples include:

◆ On each commit
◆ Manually
◆ On tags
◆ On specific branches
◆ Based on the commit name
◆ On merge requests
◆ …

An example of a CI:
gitlab-ci
It’s already there, why not use it ?

Gitlab-CI

106

➔ Gitlab comes with a CI/CD system: Gitlab-CI
➔ In your project, create a .gitlab-ci.yml
➔ This file is a config file describing your CI/CD:

◆ What to do
◆ When to do it
◆ How to do it

➔ In the project options, CI/CD options available to:
◆ Provide variables (like keys for deployment)
◆ Setup pipeline triggers
◆ ….

Gitlab-CI and its integration

107

➔ Gitlab-ci in itself is a very powerful tool
◆ Checkout the gitlab-ci.yml reference file to be convinced

➔ Its strength is also with the integration it comes with:
◆ Secrets
◆ Built-in container registry
◆ Specific/shared runners
◆ Badges: pipeline status, coverage, etc
◆ Triggers
◆ Scheduling
◆ Cross-projects

Gitlab as a DevOps tool

108

➔ Gitlab provides services for DevOps in general
➔ On top of the previously mentioned:

◆ Deployment
● Tracking deployments
● Listing platforms with types
● Well integrated with CI/CD
● Integration with Sentry

◆ Release
◆ Allow advanced Git workflows
◆ Permission system

How to write a
.gitlab-ci.yml
Don’t get confused with jobs, stages, …

Gitlab-CI

110

➔ Gitlab-CI have a concept of pipeline
➔ A pipeline is a list of stages to execute in a specific order
➔ A stage is a list of jobs to execute in parallel
➔ You can put rules for which jobs/stage to run for a specific

pipeline
➔ You can put rules to allow failure in a job to not fail the whole

pipeline
➔ https://docs.gitlab.com/ee/ci/yaml/ is the reference

https://docs.gitlab.com/ee/ci/yaml/

gitlab-ci.yml

111

➔ On the root of the YAML file you can put:
◆ A global keyword
◆ A job

gitlab-ci.yml

112

➔

gitlab-ci.yml - job

113

➔ A job
◆ has a name (its key on the root of the doc)
◆ is in a stage
◆ has a script to run

gitlab-ci.yml - job

114

➔ Job context is independant
◆ Each job is run in a new environment

● Except for the artifacts which remain
● Artifacts are defined explicitly

◆ The script is executed in a directory where the project is
● It’s provided as a git repo, you can do git operations

○ You can even commit from a CI/CD
◆ Environment variables are provided with informations

about the job
● Git commit hash, git branch, repo URL, …

gitlab-ci.yml - job

115

➔ How can you run a job in a new environment every time ?
◆ Without being able to escape this environment
◆ While being as deterministic as possible
◆ While having a way to choose what will be in the env

● Like packages, or even the OS
➔ If you don’t have a hint on how to implement that, go back to

the first slide
➔ (sidenote: some people don’t use containers as a runner

executor. It remains the most popular one though)

Observability

DevOps and
observability
DevOps is also about visibility for
everyone

What is observability

118

➔ Once an application is in production, how does it behave ?
➔ Is it overloaded ?
➔ Is it working well ?
➔ Are there clients on it ?
➔ Are they facing errors ?
➔ Bugs ?
➔ If so, what kind ?
➔ How to investigate easily ?
➔ Shall we consider scaling up/down ?
➔ For an on-call ops, how to understand what’s going on ?

What is observability

119

➔ A solution to all these questions are observability
➔ 3 pillars:

◆ Metrics
◆ Logging
◆ Tracing

➔ Ops shall provide platforms to receive these signals
➔ Dev shall provide such observability in their apps

◆ And if applicable, documentation about the observability
● And the actions to take if any

What is observability

120

metrics
Who doesn’t love graphs, charts and
histograms ?

Metrics

122

➔ Metrics is about exposing internal stats in a numerical form
➔ Metrics are meant to be aggregated
➔ Metrics are to be collected by an external tool
➔ Metrics are usually meant to be plotted
➔ 2 kinds of metrics:

◆ Data already numeric
◆ Data converted to be represented by numbers

➔ Metrics represent a state of a system at a given time
➔ Used to understand what is happening, not why

What is observability - metrics

123

➔ Most popular way of exposing metrics now:
◆ Expose a HTTP route

● Or HTTPS
● /metrics

◆ Prometheus format
➔ metric_name_unit{label1=”value1”, label2=”value2”} value

◆ i.e.:
docker_containers_total{status=”running”} 5
docker_containers_total{status=”stopped”} 1

What is observability - metrics

124

➔ What kind of metrics to expose ?
➔ Counter metrics

◆ Only increasing counter
◆ I.E:

● Number of requests handled in total
● Number of file read in total
● ….

What is observability - metrics

125

➔ What kind of metrics to expose ?
➔ Gauge metrics

◆ Single numerical value that can go up and down
◆ I.E:

● Number of videos being watched right now
● Number of open files right now
● Size of the event queue
● …

What is observability - metrics

126

➔ What kind of metrics to expose ?
➔ Histogram metrics

◆ Samples of an observation divided in buckets
◆ Meant to compute the φ-quantiles
◆ I.E:

● Amount of time taken to answer a request
● Time taken writing data to cache
● Size of a file uploaded
● ….

What is observability - metrics

127

➔ What kind of metrics to expose ?
➔ Summary metrics

◆ Like a Histogram but without the bucket sampling
◆ I.E:

● Amount of time taken to answer a request
● Time taken writing data to cache
● Size of a file uploaded
● …

What is observability - metrics

128

➔ What kind of metrics to expose ?
➔ Info metrics

◆ Hacking the metric system a bit to expose key-value info
◆ I.E:

● Version of the application
● Build number
● Hostname on which the app is running
● …

What is observability - metrics

129

➔ Metrics are key to see what’s going on
➔ We plot graph and we can visualize
➔ High level metrics (KPI) and low level
➔ Used for alerting

◆ Ex: sudden drop of connected users
➔ Used for reporting

◆ Ex: increasing amount of time taken to handle a request
after an update

◆ Ex: average user document size increasing over months

What is observability - metrics

130

logs
You logged things without even knowing
it

What is observability - logs

132

➔ Logs are the most useful indication to understand what is
going on in the app in details, with description
◆ They don’t provide any global overview though

➔ Useful to get information about:
◆ Understanding what’s going wrong
◆ Which client/route/component is:

● Used
● Not working
● Hammered

◆ What is the app doing

What is observability - logs

133

➔ Logs can hold a lot of value
◆ Even legal one, mind the GDPR for example

➔ 2 schools of thoughts about providing logs:
◆ stdout/stderr (pull model)
◆ syslog/elastic/… client (push model)

➔ Logs must be structured
◆ syslog format
◆ JSON
◆ Homemade but consistent

What is observability - logs

134

➔ Why should logs be structured ?
➔ Useful to search for specific things

◆ Logs will often be put in Loki, Elastic, …
◆ They provide query languages

● Ex: {component=”auth”, severity=”error”}
● Ex: client_id: 10 AND route: “/login”

➔ Having a structure (and a consistent and documented one) is
important

➔ GiB of logs to be generated: not read manually

What is observability - logs

135

➔ Logs shall have a severity level:
◆ DEBUG
◆ INFO
◆ WARNING
◆ ERROR

➔ Severity level must be configurable
➔ The amount of logs generated must be chosen carefully
➔ For DEBUG, don’t care
➔ Starting from INFO, one must be wise
➔ Use a logging library

What is observability - logs

136

➔ What kind of logs can we have ?
➔ One think of application logging first

◆ What is my application doing
◆ Examples:

● INFO User making a query on /api/v1/tickets
● WARNING Cache is full. Dropping half its content
● ERROR Exception uncaught while handling query
● DEBUG read 17 bytes from file /var/run/myapp/fEcUs.tmp
● FATAL Could not write data: disk is full

What is observability - logs

137

➔ What kind of logs can we have ?
➔ Security logs

◆ Admin user changed its password
◆ Deletion of xxx
◆ New device logged-in

➔ Audit, system and infra logs are used for ops

tracing
Follow the trail of events in details

What is observability - tracing

139

➔ Logs are great to see some generic information about ongoing
operation in the application

➔ They are not focused on a single user request
◆ Single transaction

➔ Traces are meant to cover this case

What is observability - tracing

140

➔ What if you application throw an error while handling a client query ?
➔ You don’t want the whole app to crash for most cases
➔ Just return an error to the client
➔ You also need the error to be reported to you to fix it
➔ Logs ?

◆ Stacktrace are multi-lines
◆ They have their own context
◆ Put in the logs some concise information usually

● ex: “Can’t connect to DB”
● ex: “Can’t find <...> for <...> via <...>”

What is observability - tracing

141

➔ Send the whole stacktrace and its context to another service
➔ Error tracking service
➔ Example: Sentry
➔ Regroup similar errors and plot their occurence
➔ Integrated with Gitlab to report bugs and regression
➔ Provide context

◆ Browser used, account id, … if useful
◆ Crumbs
◆ Runtime data
◆ Alerts

What is observability - tracing

142

➔ Tracing also covers multi spans transactions for microservices
architectures

➔ A trace is created for each transaction
◆ Very high granularity
◆ Often downsampled

➔ Used to understand interactions between services
◆ Is the database slow ? microservice A, B or C ?

➔ A bit more difficult to put in place than logs & metrics
◆ More specialized

➔ Check OpenTelemetry, Sentry, ZipKin, Tempo, …

A connected element
of observability:
monitoring
Collect, store, observe, alert, report

Monitoring

144

➔ Monitoring is a subcategory of observability
◆ Or another concept but tightly linked to observability

➔ Monitoring is about 5 points:
◆ Collect
◆ Store
◆ Visualize
◆ Alert
◆ Report

Monitoring - Collecting

145

➔ The collecting component of a monitoring solution is in charge
of getting the data

➔ Pull/Push
➔ Metrics-oriented mostly
➔ Examples:

◆ Netdata
◆ Node exporter/Prometheus
◆ Metricbeats
◆ Telegraf

Monitoring - Storing

146

➔ Metrics are representation of things happening at a given time
➔ Need to store them to have trends, history and evolution
➔ The volumetry can be quite high

◆ Depends on the resolution (1s, 15s, 30s, 1m, …)
◆ Depends on the amount of metrics

● Cardinality
➔ Use dedicated databases for this (often Time Serie

DataBases)
➔ Example: Prometheus, Netdata, InfluxDB

Monitoring - Visualizing

147

➔ Once collected over time, metrics are best represented with
graphs (visualization in general)

➔ Need to have real-time dashboards
➔ Graphs, histograms, plots, …
➔ Focus on the UI/UX
➔ Example:

◆ Grafana
◆ Netdata
◆ Kibana
◆ Chronograf

Monitoring - Reporting

148

➔ Reporting is most of the time forgotten and less popular
➔ Report once in a while (weekly, monthly, …) what happened,

and trends
◆ To be read when needed, or from time to time

➔ Create a report (i.e. PDF file) with visualizations
➔ Used to be aware of non-immediate situation
➔ Often mangled with the visualization & alerting component

Monitoring - Alerting

149

➔ Observability & Monitoring are useful to see and try to
understand what’s going on with your app/infra

➔ Used for post-mortems
◆ Evidence of the issue
◆ Provide tools for RCA to try to determine the RCE

➔ If one can understand through metrics an issue that
happened, why not alert when it happens ?
◆ Or even before if we can

Monitoring - Alerting

150

➔ Alerting should be done first on high-level metrics
◆ Number of clients
◆ Number of videos being watched
◆ Number of emails sent
◆ Latency increasing

➔ Alerting can be done on low-level metrics with care
◆ If high CPU but no impact on the client, is it an alert ?
◆ 10% of disk left, is it the same if 1GiB left of 1TiB ?

Monitoring - Alerting

151

➔ Alerts should have multiple level of criticality
◆ Think about whether to wake up an ops or not for

example
◆ Lowest level(s) can even be moved to reporting

➔ Too many alerts = alert fatigue
➔ Too many false positives = more chances to miss an

important one

Monitoring -Alerting archi

152

Monitoring - Alerting

153

➔ Be extra careful with alerting

Monitoring - Alerting

154

➔ Be extra careful with alerting

Monitoring - Alerting

155

➔ How to do proper alerting ?
➔ Many ask the question and few found the answer
➔ Appears to always be a balance between too many and too

few alerts

Monitoring - Alerting

156

➔ Alerts should be derived from SLIs, taking into account the
SLOs and sold SLA
◆ Service Level Indicators - A quantifiable indicator of the

level of service provided (often mistaken for KPIs)
◆ Service Level Objectives - An objective set on a SLI about

how much a SLI can fail
◆ Service Level Agreement - What has been sold to the

client in terms of disponibility

Monitoring - Alerting

157

➔ SLA is 100% - SLO, represents the % of availability
◆ Also expressed in a number of 9

● Three 9s means 99.9% of availability
◆ Also expressed in allowed failure time per period of time

➔ 99.9% of SLA = 8.7h/y, 44min/m
➔ 99.99% = 52min/y, 4.3min/m
➔ 99.999% = 5.2min/y, 26.3s/m
➔ Alerts can use this budget of allowed failure to avoid false

positives by working on the burn rate

Thanks !
Questions ?

158

Slides available on zarak.fr/

Contact: cyril@cri.epita.fr
zarak production#5492

159

